import cv2 import os def get_num_list(folder_path): """ 读取文件夹中的所有.png格式图片,并进行二值化处理,并返回包含二值化图片的列表。 """ binary_images = [] # 遍历文件夹中的所有文件 for filename in sorted(os.listdir(folder_path)): # 检查文件是否是.png格式 if filename.endswith('.png'): # 构建图片的完整路径 img_path = os.path.join(folder_path, filename) # 使用OpenCV读取图片为灰度图 img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE) # 检查图片是否成功读取 if img is not None: # 使用阈值进行二值化处理 # 假设我们使用127作为阈值,但这可以根据你的需求进行调整 _, binary_img = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY) # 将二值化后的图片添加到列表中 binary_images.append(binary_img.tolist()) return binary_images num_list = [ [[0, 255, 255, 255, 255, 0], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255], [0, 255, 255, 255, 255, 0]], [[0, 0, 255, 255], [255, 255, 255, 255], [0, 0, 255, 255], [0, 0, 255, 255], [0, 0, 255, 255], [0, 0, 255, 255], [0, 0, 255, 255], [0, 0, 255, 255], [0, 0, 255, 255], [0, 0, 255, 255]], [[0, 255, 255, 255, 255, 0], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255], [0, 0, 0, 0, 255, 255], [0, 0, 0, 255, 255, 0], [0, 0, 255, 255, 0, 0], [0, 255, 255, 0, 0, 0], [255, 255, 0, 0, 0, 0], [255, 255, 0, 0, 0, 0], [255, 255, 255, 255, 255, 255]], [[0, 255, 255, 255, 255, 0], [255, 255, 0, 0, 255, 255], [0, 0, 0, 0, 255, 255], [0, 0, 0, 0, 255, 255], [0, 0, 255, 255, 255, 0], [0, 0, 0, 0, 255, 255], [0, 0, 0, 0, 255, 255], [0, 0, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255], [0, 255, 255, 255, 255, 0]], [[0, 0, 0, 0, 255, 255], [0, 0, 0, 255, 255, 255], [0, 0, 255, 255, 255, 255], [0, 0, 255, 255, 255, 255], [0, 255, 255, 0, 255, 255], [0, 255, 255, 0, 255, 255], [255, 255, 0, 0, 255, 255], [255, 255, 255, 255, 255, 255], [0, 0, 0, 0, 255, 255], [0, 0, 0, 0, 255, 255]], [[255, 255, 255, 255, 255, 255], [255, 255, 0, 0, 0, 0], [255, 255, 0, 0, 0, 0], [255, 255, 0, 0, 0, 0], [255, 255, 255, 255, 255, 0], [255, 255, 0, 0, 255, 255], [0, 0, 0, 0, 255, 255], [0, 0, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255], [0, 255, 255, 255, 255, 0]], [[0, 255, 255, 255, 255, 0], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 0, 0], [255, 255, 0, 0, 0, 0], [255, 255, 255, 255, 255, 0], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255], [0, 255, 255, 255, 255, 0]], [[255, 255, 255, 255, 255, 255], [0, 0, 0, 0, 255, 255], [0, 0, 0, 255, 255, 0], [0, 0, 0, 255, 255, 0], [0, 0, 255, 255, 0, 0], [0, 0, 255, 255, 0, 0], [0, 0, 255, 255, 0, 0], [0, 255, 255, 0, 0, 0], [0, 255, 255, 0, 0, 0], [0, 255, 255, 0, 0, 0]], [[0, 255, 255, 255, 255, 0], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255], [0, 255, 255, 255, 255, 0], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255], [0, 255, 255, 255, 255, 0]], [[0, 255, 255, 255, 255, 0], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255], [0, 255, 255, 255, 255, 255], [0, 0, 0, 0, 255, 255], [0, 0, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255], [0, 255, 255, 255, 255, 0]]]