TLD_Code/number_processing.py

62 lines
3.7 KiB
Python
Raw Normal View History

import cv2
import os
def get_num_list(folder_path):
"""
读取文件夹中的所有.png格式图片并进行二值化处理并返回包含二值化图片的列表
"""
binary_images = []
# 遍历文件夹中的所有文件
for filename in sorted(os.listdir(folder_path)):
# 检查文件是否是.png格式
if filename.endswith('.png'):
# 构建图片的完整路径
img_path = os.path.join(folder_path, filename)
# 使用OpenCV读取图片为灰度图
img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)
# 检查图片是否成功读取
if img is not None:
# 使用阈值进行二值化处理
# 假设我们使用127作为阈值但这可以根据你的需求进行调整
_, binary_img = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
# 将二值化后的图片添加到列表中
binary_images.append(binary_img.tolist())
return binary_images
num_list = [
[[0, 255, 255, 255, 255, 0], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255],
[255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255],
[255, 255, 0, 0, 255, 255], [0, 255, 255, 255, 255, 0]],
[[0, 0, 255, 255], [255, 255, 255, 255], [0, 0, 255, 255], [0, 0, 255, 255], [0, 0, 255, 255], [0, 0, 255, 255],
[0, 0, 255, 255], [0, 0, 255, 255], [0, 0, 255, 255], [0, 0, 255, 255]],
[[0, 255, 255, 255, 255, 0], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255], [0, 0, 0, 0, 255, 255],
[0, 0, 0, 255, 255, 0], [0, 0, 255, 255, 0, 0], [0, 255, 255, 0, 0, 0], [255, 255, 0, 0, 0, 0],
[255, 255, 0, 0, 0, 0], [255, 255, 255, 255, 255, 255]],
[[0, 255, 255, 255, 255, 0], [255, 255, 0, 0, 255, 255], [0, 0, 0, 0, 255, 255], [0, 0, 0, 0, 255, 255],
[0, 0, 255, 255, 255, 0], [0, 0, 0, 0, 255, 255], [0, 0, 0, 0, 255, 255], [0, 0, 0, 0, 255, 255],
[255, 255, 0, 0, 255, 255], [0, 255, 255, 255, 255, 0]],
[[0, 0, 0, 0, 255, 255], [0, 0, 0, 255, 255, 255], [0, 0, 255, 255, 255, 255], [0, 0, 255, 255, 255, 255],
[0, 255, 255, 0, 255, 255], [0, 255, 255, 0, 255, 255], [255, 255, 0, 0, 255, 255], [255, 255, 255, 255, 255, 255],
[0, 0, 0, 0, 255, 255], [0, 0, 0, 0, 255, 255]],
[[255, 255, 255, 255, 255, 255], [255, 255, 0, 0, 0, 0], [255, 255, 0, 0, 0, 0], [255, 255, 0, 0, 0, 0],
[255, 255, 255, 255, 255, 0], [255, 255, 0, 0, 255, 255], [0, 0, 0, 0, 255, 255], [0, 0, 0, 0, 255, 255],
[255, 255, 0, 0, 255, 255], [0, 255, 255, 255, 255, 0]],
[[0, 255, 255, 255, 255, 0], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 0, 0], [255, 255, 0, 0, 0, 0],
[255, 255, 255, 255, 255, 0], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255],
[255, 255, 0, 0, 255, 255], [0, 255, 255, 255, 255, 0]],
[[255, 255, 255, 255, 255, 255], [0, 0, 0, 0, 255, 255], [0, 0, 0, 255, 255, 0], [0, 0, 0, 255, 255, 0],
[0, 0, 255, 255, 0, 0], [0, 0, 255, 255, 0, 0], [0, 0, 255, 255, 0, 0], [0, 255, 255, 0, 0, 0],
[0, 255, 255, 0, 0, 0], [0, 255, 255, 0, 0, 0]],
[[0, 255, 255, 255, 255, 0], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255],
[0, 255, 255, 255, 255, 0], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255],
[255, 255, 0, 0, 255, 255], [0, 255, 255, 255, 255, 0]],
[[0, 255, 255, 255, 255, 0], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255],
[255, 255, 0, 0, 255, 255], [0, 255, 255, 255, 255, 255], [0, 0, 0, 0, 255, 255], [0, 0, 0, 0, 255, 255],
[255, 255, 0, 0, 255, 255], [0, 255, 255, 255, 255, 0]]]