mirror of
https://github.com/nizhangdaye/TLD_Code.git
synced 2024-11-23 20:39:06 +08:00
62 lines
3.7 KiB
Python
62 lines
3.7 KiB
Python
|
import cv2
|
|||
|
import os
|
|||
|
|
|||
|
|
|||
|
def get_num_list(folder_path):
|
|||
|
"""
|
|||
|
读取文件夹中的所有.png格式图片,并进行二值化处理,并返回包含二值化图片的列表。
|
|||
|
"""
|
|||
|
binary_images = []
|
|||
|
# 遍历文件夹中的所有文件
|
|||
|
for filename in sorted(os.listdir(folder_path)):
|
|||
|
# 检查文件是否是.png格式
|
|||
|
if filename.endswith('.png'):
|
|||
|
# 构建图片的完整路径
|
|||
|
img_path = os.path.join(folder_path, filename)
|
|||
|
|
|||
|
# 使用OpenCV读取图片为灰度图
|
|||
|
img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)
|
|||
|
|
|||
|
# 检查图片是否成功读取
|
|||
|
if img is not None:
|
|||
|
# 使用阈值进行二值化处理
|
|||
|
# 假设我们使用127作为阈值,但这可以根据你的需求进行调整
|
|||
|
_, binary_img = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
|
|||
|
|
|||
|
# 将二值化后的图片添加到列表中
|
|||
|
binary_images.append(binary_img.tolist())
|
|||
|
|
|||
|
return binary_images
|
|||
|
|
|||
|
|
|||
|
num_list = [
|
|||
|
[[0, 255, 255, 255, 255, 0], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255],
|
|||
|
[255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255],
|
|||
|
[255, 255, 0, 0, 255, 255], [0, 255, 255, 255, 255, 0]],
|
|||
|
[[0, 0, 255, 255], [255, 255, 255, 255], [0, 0, 255, 255], [0, 0, 255, 255], [0, 0, 255, 255], [0, 0, 255, 255],
|
|||
|
[0, 0, 255, 255], [0, 0, 255, 255], [0, 0, 255, 255], [0, 0, 255, 255]],
|
|||
|
[[0, 255, 255, 255, 255, 0], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255], [0, 0, 0, 0, 255, 255],
|
|||
|
[0, 0, 0, 255, 255, 0], [0, 0, 255, 255, 0, 0], [0, 255, 255, 0, 0, 0], [255, 255, 0, 0, 0, 0],
|
|||
|
[255, 255, 0, 0, 0, 0], [255, 255, 255, 255, 255, 255]],
|
|||
|
[[0, 255, 255, 255, 255, 0], [255, 255, 0, 0, 255, 255], [0, 0, 0, 0, 255, 255], [0, 0, 0, 0, 255, 255],
|
|||
|
[0, 0, 255, 255, 255, 0], [0, 0, 0, 0, 255, 255], [0, 0, 0, 0, 255, 255], [0, 0, 0, 0, 255, 255],
|
|||
|
[255, 255, 0, 0, 255, 255], [0, 255, 255, 255, 255, 0]],
|
|||
|
[[0, 0, 0, 0, 255, 255], [0, 0, 0, 255, 255, 255], [0, 0, 255, 255, 255, 255], [0, 0, 255, 255, 255, 255],
|
|||
|
[0, 255, 255, 0, 255, 255], [0, 255, 255, 0, 255, 255], [255, 255, 0, 0, 255, 255], [255, 255, 255, 255, 255, 255],
|
|||
|
[0, 0, 0, 0, 255, 255], [0, 0, 0, 0, 255, 255]],
|
|||
|
[[255, 255, 255, 255, 255, 255], [255, 255, 0, 0, 0, 0], [255, 255, 0, 0, 0, 0], [255, 255, 0, 0, 0, 0],
|
|||
|
[255, 255, 255, 255, 255, 0], [255, 255, 0, 0, 255, 255], [0, 0, 0, 0, 255, 255], [0, 0, 0, 0, 255, 255],
|
|||
|
[255, 255, 0, 0, 255, 255], [0, 255, 255, 255, 255, 0]],
|
|||
|
[[0, 255, 255, 255, 255, 0], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 0, 0], [255, 255, 0, 0, 0, 0],
|
|||
|
[255, 255, 255, 255, 255, 0], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255],
|
|||
|
[255, 255, 0, 0, 255, 255], [0, 255, 255, 255, 255, 0]],
|
|||
|
[[255, 255, 255, 255, 255, 255], [0, 0, 0, 0, 255, 255], [0, 0, 0, 255, 255, 0], [0, 0, 0, 255, 255, 0],
|
|||
|
[0, 0, 255, 255, 0, 0], [0, 0, 255, 255, 0, 0], [0, 0, 255, 255, 0, 0], [0, 255, 255, 0, 0, 0],
|
|||
|
[0, 255, 255, 0, 0, 0], [0, 255, 255, 0, 0, 0]],
|
|||
|
[[0, 255, 255, 255, 255, 0], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255],
|
|||
|
[0, 255, 255, 255, 255, 0], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255],
|
|||
|
[255, 255, 0, 0, 255, 255], [0, 255, 255, 255, 255, 0]],
|
|||
|
[[0, 255, 255, 255, 255, 0], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255], [255, 255, 0, 0, 255, 255],
|
|||
|
[255, 255, 0, 0, 255, 255], [0, 255, 255, 255, 255, 255], [0, 0, 0, 0, 255, 255], [0, 0, 0, 0, 255, 255],
|
|||
|
[255, 255, 0, 0, 255, 255], [0, 255, 255, 255, 255, 0]]]
|