1604 lines
71 KiB
C++
1604 lines
71 KiB
C++
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
#ifndef OPENCV_FEATURES_2D_HPP
|
||
|
#define OPENCV_FEATURES_2D_HPP
|
||
|
|
||
|
#include "opencv2/opencv_modules.hpp"
|
||
|
#include "opencv2/core.hpp"
|
||
|
|
||
|
#ifdef HAVE_OPENCV_FLANN
|
||
|
#include "opencv2/flann/miniflann.hpp"
|
||
|
#endif
|
||
|
|
||
|
/**
|
||
|
@defgroup features2d 2D Features Framework
|
||
|
@{
|
||
|
@defgroup features2d_main Feature Detection and Description
|
||
|
@defgroup features2d_match Descriptor Matchers
|
||
|
|
||
|
Matchers of keypoint descriptors in OpenCV have wrappers with a common interface that enables you to
|
||
|
easily switch between different algorithms solving the same problem. This section is devoted to
|
||
|
matching descriptors that are represented as vectors in a multidimensional space. All objects that
|
||
|
implement vector descriptor matchers inherit the DescriptorMatcher interface.
|
||
|
|
||
|
@defgroup features2d_draw Drawing Function of Keypoints and Matches
|
||
|
@defgroup features2d_category Object Categorization
|
||
|
|
||
|
This section describes approaches based on local 2D features and used to categorize objects.
|
||
|
|
||
|
@defgroup feature2d_hal Hardware Acceleration Layer
|
||
|
@{
|
||
|
@defgroup features2d_hal_interface Interface
|
||
|
@}
|
||
|
@}
|
||
|
*/
|
||
|
|
||
|
namespace cv
|
||
|
{
|
||
|
|
||
|
//! @addtogroup features2d_main
|
||
|
//! @{
|
||
|
|
||
|
// //! writes vector of keypoints to the file storage
|
||
|
// CV_EXPORTS void write(FileStorage& fs, const String& name, const std::vector<KeyPoint>& keypoints);
|
||
|
// //! reads vector of keypoints from the specified file storage node
|
||
|
// CV_EXPORTS void read(const FileNode& node, CV_OUT std::vector<KeyPoint>& keypoints);
|
||
|
|
||
|
/** @brief A class filters a vector of keypoints.
|
||
|
|
||
|
Because now it is difficult to provide a convenient interface for all usage scenarios of the
|
||
|
keypoints filter class, it has only several needed by now static methods.
|
||
|
*/
|
||
|
class CV_EXPORTS KeyPointsFilter
|
||
|
{
|
||
|
public:
|
||
|
KeyPointsFilter(){}
|
||
|
|
||
|
/*
|
||
|
* Remove keypoints within borderPixels of an image edge.
|
||
|
*/
|
||
|
static void runByImageBorder( std::vector<KeyPoint>& keypoints, Size imageSize, int borderSize );
|
||
|
/*
|
||
|
* Remove keypoints of sizes out of range.
|
||
|
*/
|
||
|
static void runByKeypointSize( std::vector<KeyPoint>& keypoints, float minSize,
|
||
|
float maxSize=FLT_MAX );
|
||
|
/*
|
||
|
* Remove keypoints from some image by mask for pixels of this image.
|
||
|
*/
|
||
|
static void runByPixelsMask( std::vector<KeyPoint>& keypoints, const Mat& mask );
|
||
|
/*
|
||
|
* Remove objects from some image and a vector of points by mask for pixels of this image
|
||
|
*/
|
||
|
static void runByPixelsMask2VectorPoint(std::vector<KeyPoint> &keypoints, std::vector<std::vector<Point> > &removeFrom, const Mat &mask);
|
||
|
/*
|
||
|
* Remove duplicated keypoints.
|
||
|
*/
|
||
|
static void removeDuplicated( std::vector<KeyPoint>& keypoints );
|
||
|
/*
|
||
|
* Remove duplicated keypoints and sort the remaining keypoints
|
||
|
*/
|
||
|
static void removeDuplicatedSorted( std::vector<KeyPoint>& keypoints );
|
||
|
|
||
|
/*
|
||
|
* Retain the specified number of the best keypoints (according to the response)
|
||
|
*/
|
||
|
static void retainBest( std::vector<KeyPoint>& keypoints, int npoints );
|
||
|
};
|
||
|
|
||
|
|
||
|
/************************************ Base Classes ************************************/
|
||
|
|
||
|
/** @brief Abstract base class for 2D image feature detectors and descriptor extractors
|
||
|
*/
|
||
|
#ifdef __EMSCRIPTEN__
|
||
|
class CV_EXPORTS_W Feature2D : public Algorithm
|
||
|
#else
|
||
|
class CV_EXPORTS_W Feature2D : public virtual Algorithm
|
||
|
#endif
|
||
|
{
|
||
|
public:
|
||
|
virtual ~Feature2D();
|
||
|
|
||
|
/** @brief Detects keypoints in an image (first variant) or image set (second variant).
|
||
|
|
||
|
@param image Image.
|
||
|
@param keypoints The detected keypoints. In the second variant of the method keypoints[i] is a set
|
||
|
of keypoints detected in images[i] .
|
||
|
@param mask Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
|
||
|
matrix with non-zero values in the region of interest.
|
||
|
*/
|
||
|
CV_WRAP virtual void detect( InputArray image,
|
||
|
CV_OUT std::vector<KeyPoint>& keypoints,
|
||
|
InputArray mask=noArray() );
|
||
|
|
||
|
/** @overload
|
||
|
@param images Image set.
|
||
|
@param keypoints The detected keypoints. In the second variant of the method keypoints[i] is a set
|
||
|
of keypoints detected in images[i] .
|
||
|
@param masks Masks for each input image specifying where to look for keypoints (optional).
|
||
|
masks[i] is a mask for images[i].
|
||
|
*/
|
||
|
CV_WRAP virtual void detect( InputArrayOfArrays images,
|
||
|
CV_OUT std::vector<std::vector<KeyPoint> >& keypoints,
|
||
|
InputArrayOfArrays masks=noArray() );
|
||
|
|
||
|
/** @brief Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
|
||
|
(second variant).
|
||
|
|
||
|
@param image Image.
|
||
|
@param keypoints Input collection of keypoints. Keypoints for which a descriptor cannot be
|
||
|
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
|
||
|
with several dominant orientations (for each orientation).
|
||
|
@param descriptors Computed descriptors. In the second variant of the method descriptors[i] are
|
||
|
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
|
||
|
descriptor for keypoint j-th keypoint.
|
||
|
*/
|
||
|
CV_WRAP virtual void compute( InputArray image,
|
||
|
CV_OUT CV_IN_OUT std::vector<KeyPoint>& keypoints,
|
||
|
OutputArray descriptors );
|
||
|
|
||
|
/** @overload
|
||
|
|
||
|
@param images Image set.
|
||
|
@param keypoints Input collection of keypoints. Keypoints for which a descriptor cannot be
|
||
|
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
|
||
|
with several dominant orientations (for each orientation).
|
||
|
@param descriptors Computed descriptors. In the second variant of the method descriptors[i] are
|
||
|
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
|
||
|
descriptor for keypoint j-th keypoint.
|
||
|
*/
|
||
|
CV_WRAP virtual void compute( InputArrayOfArrays images,
|
||
|
CV_OUT CV_IN_OUT std::vector<std::vector<KeyPoint> >& keypoints,
|
||
|
OutputArrayOfArrays descriptors );
|
||
|
|
||
|
/** Detects keypoints and computes the descriptors */
|
||
|
CV_WRAP virtual void detectAndCompute( InputArray image, InputArray mask,
|
||
|
CV_OUT std::vector<KeyPoint>& keypoints,
|
||
|
OutputArray descriptors,
|
||
|
bool useProvidedKeypoints=false );
|
||
|
|
||
|
CV_WRAP virtual int descriptorSize() const;
|
||
|
CV_WRAP virtual int descriptorType() const;
|
||
|
CV_WRAP virtual int defaultNorm() const;
|
||
|
|
||
|
CV_WRAP void write( const String& fileName ) const;
|
||
|
|
||
|
CV_WRAP void read( const String& fileName );
|
||
|
|
||
|
virtual void write( FileStorage&) const CV_OVERRIDE;
|
||
|
|
||
|
// see corresponding cv::Algorithm method
|
||
|
CV_WRAP virtual void read( const FileNode&) CV_OVERRIDE;
|
||
|
|
||
|
//! Return true if detector object is empty
|
||
|
CV_WRAP virtual bool empty() const CV_OVERRIDE;
|
||
|
CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
|
||
|
|
||
|
// see corresponding cv::Algorithm method
|
||
|
CV_WRAP inline void write(FileStorage& fs, const String& name) const { Algorithm::write(fs, name); }
|
||
|
#if CV_VERSION_MAJOR < 5
|
||
|
inline void write(const Ptr<FileStorage>& fs, const String& name) const { CV_Assert(fs); Algorithm::write(*fs, name); }
|
||
|
#endif
|
||
|
};
|
||
|
|
||
|
/** Feature detectors in OpenCV have wrappers with a common interface that enables you to easily switch
|
||
|
between different algorithms solving the same problem. All objects that implement keypoint detectors
|
||
|
inherit the FeatureDetector interface. */
|
||
|
typedef Feature2D FeatureDetector;
|
||
|
|
||
|
/** Extractors of keypoint descriptors in OpenCV have wrappers with a common interface that enables you
|
||
|
to easily switch between different algorithms solving the same problem. This section is devoted to
|
||
|
computing descriptors represented as vectors in a multidimensional space. All objects that implement
|
||
|
the vector descriptor extractors inherit the DescriptorExtractor interface.
|
||
|
*/
|
||
|
typedef Feature2D DescriptorExtractor;
|
||
|
|
||
|
|
||
|
/** @brief Class for implementing the wrapper which makes detectors and extractors to be affine invariant,
|
||
|
described as ASIFT in @cite YM11 .
|
||
|
*/
|
||
|
class CV_EXPORTS_W AffineFeature : public Feature2D
|
||
|
{
|
||
|
public:
|
||
|
/**
|
||
|
@param backend The detector/extractor you want to use as backend.
|
||
|
@param maxTilt The highest power index of tilt factor. 5 is used in the paper as tilt sampling range n.
|
||
|
@param minTilt The lowest power index of tilt factor. 0 is used in the paper.
|
||
|
@param tiltStep Tilt sampling step \f$\delta_t\f$ in Algorithm 1 in the paper.
|
||
|
@param rotateStepBase Rotation sampling step factor b in Algorithm 1 in the paper.
|
||
|
*/
|
||
|
CV_WRAP static Ptr<AffineFeature> create(const Ptr<Feature2D>& backend,
|
||
|
int maxTilt = 5, int minTilt = 0, float tiltStep = 1.4142135623730951f, float rotateStepBase = 72);
|
||
|
|
||
|
CV_WRAP virtual void setViewParams(const std::vector<float>& tilts, const std::vector<float>& rolls) = 0;
|
||
|
CV_WRAP virtual void getViewParams(std::vector<float>& tilts, std::vector<float>& rolls) const = 0;
|
||
|
CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
|
||
|
};
|
||
|
|
||
|
typedef AffineFeature AffineFeatureDetector;
|
||
|
typedef AffineFeature AffineDescriptorExtractor;
|
||
|
|
||
|
|
||
|
/** @brief Class for extracting keypoints and computing descriptors using the Scale Invariant Feature Transform
|
||
|
(SIFT) algorithm by D. Lowe @cite Lowe04 .
|
||
|
*/
|
||
|
class CV_EXPORTS_W SIFT : public Feature2D
|
||
|
{
|
||
|
public:
|
||
|
/**
|
||
|
@param nfeatures The number of best features to retain. The features are ranked by their scores
|
||
|
(measured in SIFT algorithm as the local contrast)
|
||
|
|
||
|
@param nOctaveLayers The number of layers in each octave. 3 is the value used in D. Lowe paper. The
|
||
|
number of octaves is computed automatically from the image resolution.
|
||
|
|
||
|
@param contrastThreshold The contrast threshold used to filter out weak features in semi-uniform
|
||
|
(low-contrast) regions. The larger the threshold, the less features are produced by the detector.
|
||
|
|
||
|
@note The contrast threshold will be divided by nOctaveLayers when the filtering is applied. When
|
||
|
nOctaveLayers is set to default and if you want to use the value used in D. Lowe paper, 0.03, set
|
||
|
this argument to 0.09.
|
||
|
|
||
|
@param edgeThreshold The threshold used to filter out edge-like features. Note that the its meaning
|
||
|
is different from the contrastThreshold, i.e. the larger the edgeThreshold, the less features are
|
||
|
filtered out (more features are retained).
|
||
|
|
||
|
@param sigma The sigma of the Gaussian applied to the input image at the octave \#0. If your image
|
||
|
is captured with a weak camera with soft lenses, you might want to reduce the number.
|
||
|
|
||
|
@param enable_precise_upscale Whether to enable precise upscaling in the scale pyramid, which maps
|
||
|
index \f$\texttt{x}\f$ to \f$\texttt{2x}\f$. This prevents localization bias. The option
|
||
|
is disabled by default.
|
||
|
*/
|
||
|
CV_WRAP static Ptr<SIFT> create(int nfeatures = 0, int nOctaveLayers = 3,
|
||
|
double contrastThreshold = 0.04, double edgeThreshold = 10,
|
||
|
double sigma = 1.6, bool enable_precise_upscale = false);
|
||
|
|
||
|
/** @brief Create SIFT with specified descriptorType.
|
||
|
@param nfeatures The number of best features to retain. The features are ranked by their scores
|
||
|
(measured in SIFT algorithm as the local contrast)
|
||
|
|
||
|
@param nOctaveLayers The number of layers in each octave. 3 is the value used in D. Lowe paper. The
|
||
|
number of octaves is computed automatically from the image resolution.
|
||
|
|
||
|
@param contrastThreshold The contrast threshold used to filter out weak features in semi-uniform
|
||
|
(low-contrast) regions. The larger the threshold, the less features are produced by the detector.
|
||
|
|
||
|
@note The contrast threshold will be divided by nOctaveLayers when the filtering is applied. When
|
||
|
nOctaveLayers is set to default and if you want to use the value used in D. Lowe paper, 0.03, set
|
||
|
this argument to 0.09.
|
||
|
|
||
|
@param edgeThreshold The threshold used to filter out edge-like features. Note that the its meaning
|
||
|
is different from the contrastThreshold, i.e. the larger the edgeThreshold, the less features are
|
||
|
filtered out (more features are retained).
|
||
|
|
||
|
@param sigma The sigma of the Gaussian applied to the input image at the octave \#0. If your image
|
||
|
is captured with a weak camera with soft lenses, you might want to reduce the number.
|
||
|
|
||
|
@param descriptorType The type of descriptors. Only CV_32F and CV_8U are supported.
|
||
|
|
||
|
@param enable_precise_upscale Whether to enable precise upscaling in the scale pyramid, which maps
|
||
|
index \f$\texttt{x}\f$ to \f$\texttt{2x}\f$. This prevents localization bias. The option
|
||
|
is disabled by default.
|
||
|
*/
|
||
|
CV_WRAP static Ptr<SIFT> create(int nfeatures, int nOctaveLayers,
|
||
|
double contrastThreshold, double edgeThreshold,
|
||
|
double sigma, int descriptorType, bool enable_precise_upscale = false);
|
||
|
|
||
|
CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
|
||
|
|
||
|
CV_WRAP virtual void setNFeatures(int maxFeatures) = 0;
|
||
|
CV_WRAP virtual int getNFeatures() const = 0;
|
||
|
|
||
|
CV_WRAP virtual void setNOctaveLayers(int nOctaveLayers) = 0;
|
||
|
CV_WRAP virtual int getNOctaveLayers() const = 0;
|
||
|
|
||
|
CV_WRAP virtual void setContrastThreshold(double contrastThreshold) = 0;
|
||
|
CV_WRAP virtual double getContrastThreshold() const = 0;
|
||
|
|
||
|
CV_WRAP virtual void setEdgeThreshold(double edgeThreshold) = 0;
|
||
|
CV_WRAP virtual double getEdgeThreshold() const = 0;
|
||
|
|
||
|
CV_WRAP virtual void setSigma(double sigma) = 0;
|
||
|
CV_WRAP virtual double getSigma() const = 0;
|
||
|
};
|
||
|
|
||
|
typedef SIFT SiftFeatureDetector;
|
||
|
typedef SIFT SiftDescriptorExtractor;
|
||
|
|
||
|
|
||
|
/** @brief Class implementing the BRISK keypoint detector and descriptor extractor, described in @cite LCS11 .
|
||
|
*/
|
||
|
class CV_EXPORTS_W BRISK : public Feature2D
|
||
|
{
|
||
|
public:
|
||
|
/** @brief The BRISK constructor
|
||
|
|
||
|
@param thresh AGAST detection threshold score.
|
||
|
@param octaves detection octaves. Use 0 to do single scale.
|
||
|
@param patternScale apply this scale to the pattern used for sampling the neighbourhood of a
|
||
|
keypoint.
|
||
|
*/
|
||
|
CV_WRAP static Ptr<BRISK> create(int thresh=30, int octaves=3, float patternScale=1.0f);
|
||
|
|
||
|
/** @brief The BRISK constructor for a custom pattern
|
||
|
|
||
|
@param radiusList defines the radii (in pixels) where the samples around a keypoint are taken (for
|
||
|
keypoint scale 1).
|
||
|
@param numberList defines the number of sampling points on the sampling circle. Must be the same
|
||
|
size as radiusList..
|
||
|
@param dMax threshold for the short pairings used for descriptor formation (in pixels for keypoint
|
||
|
scale 1).
|
||
|
@param dMin threshold for the long pairings used for orientation determination (in pixels for
|
||
|
keypoint scale 1).
|
||
|
@param indexChange index remapping of the bits. */
|
||
|
CV_WRAP static Ptr<BRISK> create(const std::vector<float> &radiusList, const std::vector<int> &numberList,
|
||
|
float dMax=5.85f, float dMin=8.2f, const std::vector<int>& indexChange=std::vector<int>());
|
||
|
|
||
|
/** @brief The BRISK constructor for a custom pattern, detection threshold and octaves
|
||
|
|
||
|
@param thresh AGAST detection threshold score.
|
||
|
@param octaves detection octaves. Use 0 to do single scale.
|
||
|
@param radiusList defines the radii (in pixels) where the samples around a keypoint are taken (for
|
||
|
keypoint scale 1).
|
||
|
@param numberList defines the number of sampling points on the sampling circle. Must be the same
|
||
|
size as radiusList..
|
||
|
@param dMax threshold for the short pairings used for descriptor formation (in pixels for keypoint
|
||
|
scale 1).
|
||
|
@param dMin threshold for the long pairings used for orientation determination (in pixels for
|
||
|
keypoint scale 1).
|
||
|
@param indexChange index remapping of the bits. */
|
||
|
CV_WRAP static Ptr<BRISK> create(int thresh, int octaves, const std::vector<float> &radiusList,
|
||
|
const std::vector<int> &numberList, float dMax=5.85f, float dMin=8.2f,
|
||
|
const std::vector<int>& indexChange=std::vector<int>());
|
||
|
CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
|
||
|
|
||
|
/** @brief Set detection threshold.
|
||
|
@param threshold AGAST detection threshold score.
|
||
|
*/
|
||
|
CV_WRAP virtual void setThreshold(int threshold) = 0;
|
||
|
CV_WRAP virtual int getThreshold() const = 0;
|
||
|
|
||
|
/** @brief Set detection octaves.
|
||
|
@param octaves detection octaves. Use 0 to do single scale.
|
||
|
*/
|
||
|
CV_WRAP virtual void setOctaves(int octaves) = 0;
|
||
|
CV_WRAP virtual int getOctaves() const = 0;
|
||
|
/** @brief Set detection patternScale.
|
||
|
@param patternScale apply this scale to the pattern used for sampling the neighbourhood of a
|
||
|
keypoint.
|
||
|
*/
|
||
|
CV_WRAP virtual void setPatternScale(float patternScale) = 0;
|
||
|
CV_WRAP virtual float getPatternScale() const = 0;
|
||
|
};
|
||
|
|
||
|
/** @brief Class implementing the ORB (*oriented BRIEF*) keypoint detector and descriptor extractor
|
||
|
|
||
|
described in @cite RRKB11 . The algorithm uses FAST in pyramids to detect stable keypoints, selects
|
||
|
the strongest features using FAST or Harris response, finds their orientation using first-order
|
||
|
moments and computes the descriptors using BRIEF (where the coordinates of random point pairs (or
|
||
|
k-tuples) are rotated according to the measured orientation).
|
||
|
*/
|
||
|
class CV_EXPORTS_W ORB : public Feature2D
|
||
|
{
|
||
|
public:
|
||
|
enum ScoreType { HARRIS_SCORE=0, FAST_SCORE=1 };
|
||
|
static const int kBytes = 32;
|
||
|
|
||
|
/** @brief The ORB constructor
|
||
|
|
||
|
@param nfeatures The maximum number of features to retain.
|
||
|
@param scaleFactor Pyramid decimation ratio, greater than 1. scaleFactor==2 means the classical
|
||
|
pyramid, where each next level has 4x less pixels than the previous, but such a big scale factor
|
||
|
will degrade feature matching scores dramatically. On the other hand, too close to 1 scale factor
|
||
|
will mean that to cover certain scale range you will need more pyramid levels and so the speed
|
||
|
will suffer.
|
||
|
@param nlevels The number of pyramid levels. The smallest level will have linear size equal to
|
||
|
input_image_linear_size/pow(scaleFactor, nlevels - firstLevel).
|
||
|
@param edgeThreshold This is size of the border where the features are not detected. It should
|
||
|
roughly match the patchSize parameter.
|
||
|
@param firstLevel The level of pyramid to put source image to. Previous layers are filled
|
||
|
with upscaled source image.
|
||
|
@param WTA_K The number of points that produce each element of the oriented BRIEF descriptor. The
|
||
|
default value 2 means the BRIEF where we take a random point pair and compare their brightnesses,
|
||
|
so we get 0/1 response. Other possible values are 3 and 4. For example, 3 means that we take 3
|
||
|
random points (of course, those point coordinates are random, but they are generated from the
|
||
|
pre-defined seed, so each element of BRIEF descriptor is computed deterministically from the pixel
|
||
|
rectangle), find point of maximum brightness and output index of the winner (0, 1 or 2). Such
|
||
|
output will occupy 2 bits, and therefore it will need a special variant of Hamming distance,
|
||
|
denoted as NORM_HAMMING2 (2 bits per bin). When WTA_K=4, we take 4 random points to compute each
|
||
|
bin (that will also occupy 2 bits with possible values 0, 1, 2 or 3).
|
||
|
@param scoreType The default HARRIS_SCORE means that Harris algorithm is used to rank features
|
||
|
(the score is written to KeyPoint::score and is used to retain best nfeatures features);
|
||
|
FAST_SCORE is alternative value of the parameter that produces slightly less stable keypoints,
|
||
|
but it is a little faster to compute.
|
||
|
@param patchSize size of the patch used by the oriented BRIEF descriptor. Of course, on smaller
|
||
|
pyramid layers the perceived image area covered by a feature will be larger.
|
||
|
@param fastThreshold the fast threshold
|
||
|
*/
|
||
|
CV_WRAP static Ptr<ORB> create(int nfeatures=500, float scaleFactor=1.2f, int nlevels=8, int edgeThreshold=31,
|
||
|
int firstLevel=0, int WTA_K=2, ORB::ScoreType scoreType=ORB::HARRIS_SCORE, int patchSize=31, int fastThreshold=20);
|
||
|
|
||
|
CV_WRAP virtual void setMaxFeatures(int maxFeatures) = 0;
|
||
|
CV_WRAP virtual int getMaxFeatures() const = 0;
|
||
|
|
||
|
CV_WRAP virtual void setScaleFactor(double scaleFactor) = 0;
|
||
|
CV_WRAP virtual double getScaleFactor() const = 0;
|
||
|
|
||
|
CV_WRAP virtual void setNLevels(int nlevels) = 0;
|
||
|
CV_WRAP virtual int getNLevels() const = 0;
|
||
|
|
||
|
CV_WRAP virtual void setEdgeThreshold(int edgeThreshold) = 0;
|
||
|
CV_WRAP virtual int getEdgeThreshold() const = 0;
|
||
|
|
||
|
CV_WRAP virtual void setFirstLevel(int firstLevel) = 0;
|
||
|
CV_WRAP virtual int getFirstLevel() const = 0;
|
||
|
|
||
|
CV_WRAP virtual void setWTA_K(int wta_k) = 0;
|
||
|
CV_WRAP virtual int getWTA_K() const = 0;
|
||
|
|
||
|
CV_WRAP virtual void setScoreType(ORB::ScoreType scoreType) = 0;
|
||
|
CV_WRAP virtual ORB::ScoreType getScoreType() const = 0;
|
||
|
|
||
|
CV_WRAP virtual void setPatchSize(int patchSize) = 0;
|
||
|
CV_WRAP virtual int getPatchSize() const = 0;
|
||
|
|
||
|
CV_WRAP virtual void setFastThreshold(int fastThreshold) = 0;
|
||
|
CV_WRAP virtual int getFastThreshold() const = 0;
|
||
|
CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
|
||
|
};
|
||
|
|
||
|
/** @brief Maximally stable extremal region extractor
|
||
|
|
||
|
The class encapsulates all the parameters of the %MSER extraction algorithm (see [wiki
|
||
|
article](http://en.wikipedia.org/wiki/Maximally_stable_extremal_regions)).
|
||
|
|
||
|
- there are two different implementation of %MSER: one for grey image, one for color image
|
||
|
|
||
|
- the grey image algorithm is taken from: @cite nister2008linear ; the paper claims to be faster
|
||
|
than union-find method; it actually get 1.5~2m/s on my centrino L7200 1.2GHz laptop.
|
||
|
|
||
|
- the color image algorithm is taken from: @cite forssen2007maximally ; it should be much slower
|
||
|
than grey image method ( 3~4 times )
|
||
|
|
||
|
- (Python) A complete example showing the use of the %MSER detector can be found at samples/python/mser.py
|
||
|
*/
|
||
|
class CV_EXPORTS_W MSER : public Feature2D
|
||
|
{
|
||
|
public:
|
||
|
/** @brief Full constructor for %MSER detector
|
||
|
|
||
|
@param delta it compares \f$(size_{i}-size_{i-delta})/size_{i-delta}\f$
|
||
|
@param min_area prune the area which smaller than minArea
|
||
|
@param max_area prune the area which bigger than maxArea
|
||
|
@param max_variation prune the area have similar size to its children
|
||
|
@param min_diversity for color image, trace back to cut off mser with diversity less than min_diversity
|
||
|
@param max_evolution for color image, the evolution steps
|
||
|
@param area_threshold for color image, the area threshold to cause re-initialize
|
||
|
@param min_margin for color image, ignore too small margin
|
||
|
@param edge_blur_size for color image, the aperture size for edge blur
|
||
|
*/
|
||
|
CV_WRAP static Ptr<MSER> create( int delta=5, int min_area=60, int max_area=14400,
|
||
|
double max_variation=0.25, double min_diversity=.2,
|
||
|
int max_evolution=200, double area_threshold=1.01,
|
||
|
double min_margin=0.003, int edge_blur_size=5 );
|
||
|
|
||
|
/** @brief Detect %MSER regions
|
||
|
|
||
|
@param image input image (8UC1, 8UC3 or 8UC4, must be greater or equal than 3x3)
|
||
|
@param msers resulting list of point sets
|
||
|
@param bboxes resulting bounding boxes
|
||
|
*/
|
||
|
CV_WRAP virtual void detectRegions( InputArray image,
|
||
|
CV_OUT std::vector<std::vector<Point> >& msers,
|
||
|
CV_OUT std::vector<Rect>& bboxes ) = 0;
|
||
|
|
||
|
CV_WRAP virtual void setDelta(int delta) = 0;
|
||
|
CV_WRAP virtual int getDelta() const = 0;
|
||
|
|
||
|
CV_WRAP virtual void setMinArea(int minArea) = 0;
|
||
|
CV_WRAP virtual int getMinArea() const = 0;
|
||
|
|
||
|
CV_WRAP virtual void setMaxArea(int maxArea) = 0;
|
||
|
CV_WRAP virtual int getMaxArea() const = 0;
|
||
|
|
||
|
CV_WRAP virtual void setMaxVariation(double maxVariation) = 0;
|
||
|
CV_WRAP virtual double getMaxVariation() const = 0;
|
||
|
|
||
|
CV_WRAP virtual void setMinDiversity(double minDiversity) = 0;
|
||
|
CV_WRAP virtual double getMinDiversity() const = 0;
|
||
|
|
||
|
CV_WRAP virtual void setMaxEvolution(int maxEvolution) = 0;
|
||
|
CV_WRAP virtual int getMaxEvolution() const = 0;
|
||
|
|
||
|
CV_WRAP virtual void setAreaThreshold(double areaThreshold) = 0;
|
||
|
CV_WRAP virtual double getAreaThreshold() const = 0;
|
||
|
|
||
|
CV_WRAP virtual void setMinMargin(double min_margin) = 0;
|
||
|
CV_WRAP virtual double getMinMargin() const = 0;
|
||
|
|
||
|
CV_WRAP virtual void setEdgeBlurSize(int edge_blur_size) = 0;
|
||
|
CV_WRAP virtual int getEdgeBlurSize() const = 0;
|
||
|
|
||
|
CV_WRAP virtual void setPass2Only(bool f) = 0;
|
||
|
CV_WRAP virtual bool getPass2Only() const = 0;
|
||
|
|
||
|
CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
|
||
|
};
|
||
|
|
||
|
//! @} features2d_main
|
||
|
|
||
|
//! @addtogroup features2d_main
|
||
|
//! @{
|
||
|
|
||
|
/** @brief Wrapping class for feature detection using the FAST method. :
|
||
|
*/
|
||
|
class CV_EXPORTS_W FastFeatureDetector : public Feature2D
|
||
|
{
|
||
|
public:
|
||
|
enum DetectorType
|
||
|
{
|
||
|
TYPE_5_8 = 0, TYPE_7_12 = 1, TYPE_9_16 = 2
|
||
|
};
|
||
|
enum
|
||
|
{
|
||
|
THRESHOLD = 10000, NONMAX_SUPPRESSION=10001, FAST_N=10002
|
||
|
};
|
||
|
|
||
|
|
||
|
CV_WRAP static Ptr<FastFeatureDetector> create( int threshold=10,
|
||
|
bool nonmaxSuppression=true,
|
||
|
FastFeatureDetector::DetectorType type=FastFeatureDetector::TYPE_9_16 );
|
||
|
|
||
|
CV_WRAP virtual void setThreshold(int threshold) = 0;
|
||
|
CV_WRAP virtual int getThreshold() const = 0;
|
||
|
|
||
|
CV_WRAP virtual void setNonmaxSuppression(bool f) = 0;
|
||
|
CV_WRAP virtual bool getNonmaxSuppression() const = 0;
|
||
|
|
||
|
CV_WRAP virtual void setType(FastFeatureDetector::DetectorType type) = 0;
|
||
|
CV_WRAP virtual FastFeatureDetector::DetectorType getType() const = 0;
|
||
|
CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
|
||
|
};
|
||
|
|
||
|
/** @overload */
|
||
|
CV_EXPORTS void FAST( InputArray image, CV_OUT std::vector<KeyPoint>& keypoints,
|
||
|
int threshold, bool nonmaxSuppression=true );
|
||
|
|
||
|
/** @brief Detects corners using the FAST algorithm
|
||
|
|
||
|
@param image grayscale image where keypoints (corners) are detected.
|
||
|
@param keypoints keypoints detected on the image.
|
||
|
@param threshold threshold on difference between intensity of the central pixel and pixels of a
|
||
|
circle around this pixel.
|
||
|
@param nonmaxSuppression if true, non-maximum suppression is applied to detected corners
|
||
|
(keypoints).
|
||
|
@param type one of the three neighborhoods as defined in the paper:
|
||
|
FastFeatureDetector::TYPE_9_16, FastFeatureDetector::TYPE_7_12,
|
||
|
FastFeatureDetector::TYPE_5_8
|
||
|
|
||
|
Detects corners using the FAST algorithm by @cite Rosten06 .
|
||
|
|
||
|
@note In Python API, types are given as cv.FAST_FEATURE_DETECTOR_TYPE_5_8,
|
||
|
cv.FAST_FEATURE_DETECTOR_TYPE_7_12 and cv.FAST_FEATURE_DETECTOR_TYPE_9_16. For corner
|
||
|
detection, use cv.FAST.detect() method.
|
||
|
*/
|
||
|
CV_EXPORTS void FAST( InputArray image, CV_OUT std::vector<KeyPoint>& keypoints,
|
||
|
int threshold, bool nonmaxSuppression, FastFeatureDetector::DetectorType type );
|
||
|
|
||
|
//! @} features2d_main
|
||
|
|
||
|
//! @addtogroup features2d_main
|
||
|
//! @{
|
||
|
|
||
|
/** @brief Wrapping class for feature detection using the AGAST method. :
|
||
|
*/
|
||
|
class CV_EXPORTS_W AgastFeatureDetector : public Feature2D
|
||
|
{
|
||
|
public:
|
||
|
enum DetectorType
|
||
|
{
|
||
|
AGAST_5_8 = 0, AGAST_7_12d = 1, AGAST_7_12s = 2, OAST_9_16 = 3,
|
||
|
};
|
||
|
|
||
|
enum
|
||
|
{
|
||
|
THRESHOLD = 10000, NONMAX_SUPPRESSION = 10001,
|
||
|
};
|
||
|
|
||
|
CV_WRAP static Ptr<AgastFeatureDetector> create( int threshold=10,
|
||
|
bool nonmaxSuppression=true,
|
||
|
AgastFeatureDetector::DetectorType type = AgastFeatureDetector::OAST_9_16);
|
||
|
|
||
|
CV_WRAP virtual void setThreshold(int threshold) = 0;
|
||
|
CV_WRAP virtual int getThreshold() const = 0;
|
||
|
|
||
|
CV_WRAP virtual void setNonmaxSuppression(bool f) = 0;
|
||
|
CV_WRAP virtual bool getNonmaxSuppression() const = 0;
|
||
|
|
||
|
CV_WRAP virtual void setType(AgastFeatureDetector::DetectorType type) = 0;
|
||
|
CV_WRAP virtual AgastFeatureDetector::DetectorType getType() const = 0;
|
||
|
CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
|
||
|
};
|
||
|
|
||
|
/** @overload */
|
||
|
CV_EXPORTS void AGAST( InputArray image, CV_OUT std::vector<KeyPoint>& keypoints,
|
||
|
int threshold, bool nonmaxSuppression=true );
|
||
|
|
||
|
/** @brief Detects corners using the AGAST algorithm
|
||
|
|
||
|
@param image grayscale image where keypoints (corners) are detected.
|
||
|
@param keypoints keypoints detected on the image.
|
||
|
@param threshold threshold on difference between intensity of the central pixel and pixels of a
|
||
|
circle around this pixel.
|
||
|
@param nonmaxSuppression if true, non-maximum suppression is applied to detected corners
|
||
|
(keypoints).
|
||
|
@param type one of the four neighborhoods as defined in the paper:
|
||
|
AgastFeatureDetector::AGAST_5_8, AgastFeatureDetector::AGAST_7_12d,
|
||
|
AgastFeatureDetector::AGAST_7_12s, AgastFeatureDetector::OAST_9_16
|
||
|
|
||
|
For non-Intel platforms, there is a tree optimised variant of AGAST with same numerical results.
|
||
|
The 32-bit binary tree tables were generated automatically from original code using perl script.
|
||
|
The perl script and examples of tree generation are placed in features2d/doc folder.
|
||
|
Detects corners using the AGAST algorithm by @cite mair2010_agast .
|
||
|
|
||
|
*/
|
||
|
CV_EXPORTS void AGAST( InputArray image, CV_OUT std::vector<KeyPoint>& keypoints,
|
||
|
int threshold, bool nonmaxSuppression, AgastFeatureDetector::DetectorType type );
|
||
|
|
||
|
/** @brief Wrapping class for feature detection using the goodFeaturesToTrack function. :
|
||
|
*/
|
||
|
class CV_EXPORTS_W GFTTDetector : public Feature2D
|
||
|
{
|
||
|
public:
|
||
|
CV_WRAP static Ptr<GFTTDetector> create( int maxCorners=1000, double qualityLevel=0.01, double minDistance=1,
|
||
|
int blockSize=3, bool useHarrisDetector=false, double k=0.04 );
|
||
|
CV_WRAP static Ptr<GFTTDetector> create( int maxCorners, double qualityLevel, double minDistance,
|
||
|
int blockSize, int gradiantSize, bool useHarrisDetector=false, double k=0.04 );
|
||
|
CV_WRAP virtual void setMaxFeatures(int maxFeatures) = 0;
|
||
|
CV_WRAP virtual int getMaxFeatures() const = 0;
|
||
|
|
||
|
CV_WRAP virtual void setQualityLevel(double qlevel) = 0;
|
||
|
CV_WRAP virtual double getQualityLevel() const = 0;
|
||
|
|
||
|
CV_WRAP virtual void setMinDistance(double minDistance) = 0;
|
||
|
CV_WRAP virtual double getMinDistance() const = 0;
|
||
|
|
||
|
CV_WRAP virtual void setBlockSize(int blockSize) = 0;
|
||
|
CV_WRAP virtual int getBlockSize() const = 0;
|
||
|
|
||
|
CV_WRAP virtual void setGradientSize(int gradientSize_) = 0;
|
||
|
CV_WRAP virtual int getGradientSize() = 0;
|
||
|
|
||
|
CV_WRAP virtual void setHarrisDetector(bool val) = 0;
|
||
|
CV_WRAP virtual bool getHarrisDetector() const = 0;
|
||
|
|
||
|
CV_WRAP virtual void setK(double k) = 0;
|
||
|
CV_WRAP virtual double getK() const = 0;
|
||
|
CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
|
||
|
};
|
||
|
|
||
|
/** @brief Class for extracting blobs from an image. :
|
||
|
|
||
|
The class implements a simple algorithm for extracting blobs from an image:
|
||
|
|
||
|
1. Convert the source image to binary images by applying thresholding with several thresholds from
|
||
|
minThreshold (inclusive) to maxThreshold (exclusive) with distance thresholdStep between
|
||
|
neighboring thresholds.
|
||
|
2. Extract connected components from every binary image by findContours and calculate their
|
||
|
centers.
|
||
|
3. Group centers from several binary images by their coordinates. Close centers form one group that
|
||
|
corresponds to one blob, which is controlled by the minDistBetweenBlobs parameter.
|
||
|
4. From the groups, estimate final centers of blobs and their radiuses and return as locations and
|
||
|
sizes of keypoints.
|
||
|
|
||
|
This class performs several filtrations of returned blobs. You should set filterBy\* to true/false
|
||
|
to turn on/off corresponding filtration. Available filtrations:
|
||
|
|
||
|
- **By color**. This filter compares the intensity of a binary image at the center of a blob to
|
||
|
blobColor. If they differ, the blob is filtered out. Use blobColor = 0 to extract dark blobs
|
||
|
and blobColor = 255 to extract light blobs.
|
||
|
- **By area**. Extracted blobs have an area between minArea (inclusive) and maxArea (exclusive).
|
||
|
- **By circularity**. Extracted blobs have circularity
|
||
|
(\f$\frac{4*\pi*Area}{perimeter * perimeter}\f$) between minCircularity (inclusive) and
|
||
|
maxCircularity (exclusive).
|
||
|
- **By ratio of the minimum inertia to maximum inertia**. Extracted blobs have this ratio
|
||
|
between minInertiaRatio (inclusive) and maxInertiaRatio (exclusive).
|
||
|
- **By convexity**. Extracted blobs have convexity (area / area of blob convex hull) between
|
||
|
minConvexity (inclusive) and maxConvexity (exclusive).
|
||
|
|
||
|
Default values of parameters are tuned to extract dark circular blobs.
|
||
|
*/
|
||
|
class CV_EXPORTS_W SimpleBlobDetector : public Feature2D
|
||
|
{
|
||
|
public:
|
||
|
struct CV_EXPORTS_W_SIMPLE Params
|
||
|
{
|
||
|
CV_WRAP Params();
|
||
|
CV_PROP_RW float thresholdStep;
|
||
|
CV_PROP_RW float minThreshold;
|
||
|
CV_PROP_RW float maxThreshold;
|
||
|
CV_PROP_RW size_t minRepeatability;
|
||
|
CV_PROP_RW float minDistBetweenBlobs;
|
||
|
|
||
|
CV_PROP_RW bool filterByColor;
|
||
|
CV_PROP_RW uchar blobColor;
|
||
|
|
||
|
CV_PROP_RW bool filterByArea;
|
||
|
CV_PROP_RW float minArea, maxArea;
|
||
|
|
||
|
CV_PROP_RW bool filterByCircularity;
|
||
|
CV_PROP_RW float minCircularity, maxCircularity;
|
||
|
|
||
|
CV_PROP_RW bool filterByInertia;
|
||
|
CV_PROP_RW float minInertiaRatio, maxInertiaRatio;
|
||
|
|
||
|
CV_PROP_RW bool filterByConvexity;
|
||
|
CV_PROP_RW float minConvexity, maxConvexity;
|
||
|
|
||
|
CV_PROP_RW bool collectContours;
|
||
|
|
||
|
void read( const FileNode& fn );
|
||
|
void write( FileStorage& fs ) const;
|
||
|
};
|
||
|
|
||
|
CV_WRAP static Ptr<SimpleBlobDetector>
|
||
|
create(const SimpleBlobDetector::Params ¶meters = SimpleBlobDetector::Params());
|
||
|
|
||
|
CV_WRAP virtual void setParams(const SimpleBlobDetector::Params& params ) = 0;
|
||
|
CV_WRAP virtual SimpleBlobDetector::Params getParams() const = 0;
|
||
|
|
||
|
CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
|
||
|
CV_WRAP virtual const std::vector<std::vector<cv::Point> >& getBlobContours() const;
|
||
|
};
|
||
|
|
||
|
//! @} features2d_main
|
||
|
|
||
|
//! @addtogroup features2d_main
|
||
|
//! @{
|
||
|
|
||
|
/** @brief Class implementing the KAZE keypoint detector and descriptor extractor, described in @cite ABD12 .
|
||
|
|
||
|
@note AKAZE descriptor can only be used with KAZE or AKAZE keypoints .. [ABD12] KAZE Features. Pablo
|
||
|
F. Alcantarilla, Adrien Bartoli and Andrew J. Davison. In European Conference on Computer Vision
|
||
|
(ECCV), Fiorenze, Italy, October 2012.
|
||
|
*/
|
||
|
class CV_EXPORTS_W KAZE : public Feature2D
|
||
|
{
|
||
|
public:
|
||
|
enum DiffusivityType
|
||
|
{
|
||
|
DIFF_PM_G1 = 0,
|
||
|
DIFF_PM_G2 = 1,
|
||
|
DIFF_WEICKERT = 2,
|
||
|
DIFF_CHARBONNIER = 3
|
||
|
};
|
||
|
|
||
|
/** @brief The KAZE constructor
|
||
|
|
||
|
@param extended Set to enable extraction of extended (128-byte) descriptor.
|
||
|
@param upright Set to enable use of upright descriptors (non rotation-invariant).
|
||
|
@param threshold Detector response threshold to accept point
|
||
|
@param nOctaves Maximum octave evolution of the image
|
||
|
@param nOctaveLayers Default number of sublevels per scale level
|
||
|
@param diffusivity Diffusivity type. DIFF_PM_G1, DIFF_PM_G2, DIFF_WEICKERT or
|
||
|
DIFF_CHARBONNIER
|
||
|
*/
|
||
|
CV_WRAP static Ptr<KAZE> create(bool extended=false, bool upright=false,
|
||
|
float threshold = 0.001f,
|
||
|
int nOctaves = 4, int nOctaveLayers = 4,
|
||
|
KAZE::DiffusivityType diffusivity = KAZE::DIFF_PM_G2);
|
||
|
|
||
|
CV_WRAP virtual void setExtended(bool extended) = 0;
|
||
|
CV_WRAP virtual bool getExtended() const = 0;
|
||
|
|
||
|
CV_WRAP virtual void setUpright(bool upright) = 0;
|
||
|
CV_WRAP virtual bool getUpright() const = 0;
|
||
|
|
||
|
CV_WRAP virtual void setThreshold(double threshold) = 0;
|
||
|
CV_WRAP virtual double getThreshold() const = 0;
|
||
|
|
||
|
CV_WRAP virtual void setNOctaves(int octaves) = 0;
|
||
|
CV_WRAP virtual int getNOctaves() const = 0;
|
||
|
|
||
|
CV_WRAP virtual void setNOctaveLayers(int octaveLayers) = 0;
|
||
|
CV_WRAP virtual int getNOctaveLayers() const = 0;
|
||
|
|
||
|
CV_WRAP virtual void setDiffusivity(KAZE::DiffusivityType diff) = 0;
|
||
|
CV_WRAP virtual KAZE::DiffusivityType getDiffusivity() const = 0;
|
||
|
CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
|
||
|
};
|
||
|
|
||
|
/** @brief Class implementing the AKAZE keypoint detector and descriptor extractor, described in @cite ANB13.
|
||
|
|
||
|
@details AKAZE descriptors can only be used with KAZE or AKAZE keypoints. This class is thread-safe.
|
||
|
|
||
|
@note When you need descriptors use Feature2D::detectAndCompute, which
|
||
|
provides better performance. When using Feature2D::detect followed by
|
||
|
Feature2D::compute scale space pyramid is computed twice.
|
||
|
|
||
|
@note AKAZE implements T-API. When image is passed as UMat some parts of the algorithm
|
||
|
will use OpenCL.
|
||
|
|
||
|
@note [ANB13] Fast Explicit Diffusion for Accelerated Features in Nonlinear
|
||
|
Scale Spaces. Pablo F. Alcantarilla, Jesús Nuevo and Adrien Bartoli. In
|
||
|
British Machine Vision Conference (BMVC), Bristol, UK, September 2013.
|
||
|
|
||
|
*/
|
||
|
class CV_EXPORTS_W AKAZE : public Feature2D
|
||
|
{
|
||
|
public:
|
||
|
// AKAZE descriptor type
|
||
|
enum DescriptorType
|
||
|
{
|
||
|
DESCRIPTOR_KAZE_UPRIGHT = 2, ///< Upright descriptors, not invariant to rotation
|
||
|
DESCRIPTOR_KAZE = 3,
|
||
|
DESCRIPTOR_MLDB_UPRIGHT = 4, ///< Upright descriptors, not invariant to rotation
|
||
|
DESCRIPTOR_MLDB = 5
|
||
|
};
|
||
|
|
||
|
/** @brief The AKAZE constructor
|
||
|
|
||
|
@param descriptor_type Type of the extracted descriptor: DESCRIPTOR_KAZE,
|
||
|
DESCRIPTOR_KAZE_UPRIGHT, DESCRIPTOR_MLDB or DESCRIPTOR_MLDB_UPRIGHT.
|
||
|
@param descriptor_size Size of the descriptor in bits. 0 -\> Full size
|
||
|
@param descriptor_channels Number of channels in the descriptor (1, 2, 3)
|
||
|
@param threshold Detector response threshold to accept point
|
||
|
@param nOctaves Maximum octave evolution of the image
|
||
|
@param nOctaveLayers Default number of sublevels per scale level
|
||
|
@param diffusivity Diffusivity type. DIFF_PM_G1, DIFF_PM_G2, DIFF_WEICKERT or
|
||
|
DIFF_CHARBONNIER
|
||
|
*/
|
||
|
CV_WRAP static Ptr<AKAZE> create(AKAZE::DescriptorType descriptor_type = AKAZE::DESCRIPTOR_MLDB,
|
||
|
int descriptor_size = 0, int descriptor_channels = 3,
|
||
|
float threshold = 0.001f, int nOctaves = 4,
|
||
|
int nOctaveLayers = 4, KAZE::DiffusivityType diffusivity = KAZE::DIFF_PM_G2);
|
||
|
|
||
|
CV_WRAP virtual void setDescriptorType(AKAZE::DescriptorType dtype) = 0;
|
||
|
CV_WRAP virtual AKAZE::DescriptorType getDescriptorType() const = 0;
|
||
|
|
||
|
CV_WRAP virtual void setDescriptorSize(int dsize) = 0;
|
||
|
CV_WRAP virtual int getDescriptorSize() const = 0;
|
||
|
|
||
|
CV_WRAP virtual void setDescriptorChannels(int dch) = 0;
|
||
|
CV_WRAP virtual int getDescriptorChannels() const = 0;
|
||
|
|
||
|
CV_WRAP virtual void setThreshold(double threshold) = 0;
|
||
|
CV_WRAP virtual double getThreshold() const = 0;
|
||
|
|
||
|
CV_WRAP virtual void setNOctaves(int octaves) = 0;
|
||
|
CV_WRAP virtual int getNOctaves() const = 0;
|
||
|
|
||
|
CV_WRAP virtual void setNOctaveLayers(int octaveLayers) = 0;
|
||
|
CV_WRAP virtual int getNOctaveLayers() const = 0;
|
||
|
|
||
|
CV_WRAP virtual void setDiffusivity(KAZE::DiffusivityType diff) = 0;
|
||
|
CV_WRAP virtual KAZE::DiffusivityType getDiffusivity() const = 0;
|
||
|
CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
|
||
|
};
|
||
|
|
||
|
//! @} features2d_main
|
||
|
|
||
|
/****************************************************************************************\
|
||
|
* Distance *
|
||
|
\****************************************************************************************/
|
||
|
|
||
|
template<typename T>
|
||
|
struct CV_EXPORTS Accumulator
|
||
|
{
|
||
|
typedef T Type;
|
||
|
};
|
||
|
|
||
|
template<> struct Accumulator<unsigned char> { typedef float Type; };
|
||
|
template<> struct Accumulator<unsigned short> { typedef float Type; };
|
||
|
template<> struct Accumulator<char> { typedef float Type; };
|
||
|
template<> struct Accumulator<short> { typedef float Type; };
|
||
|
|
||
|
/*
|
||
|
* Squared Euclidean distance functor
|
||
|
*/
|
||
|
template<class T>
|
||
|
struct CV_EXPORTS SL2
|
||
|
{
|
||
|
static const NormTypes normType = NORM_L2SQR;
|
||
|
typedef T ValueType;
|
||
|
typedef typename Accumulator<T>::Type ResultType;
|
||
|
|
||
|
ResultType operator()( const T* a, const T* b, int size ) const
|
||
|
{
|
||
|
return normL2Sqr<ValueType, ResultType>(a, b, size);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Euclidean distance functor
|
||
|
*/
|
||
|
template<class T>
|
||
|
struct L2
|
||
|
{
|
||
|
static const NormTypes normType = NORM_L2;
|
||
|
typedef T ValueType;
|
||
|
typedef typename Accumulator<T>::Type ResultType;
|
||
|
|
||
|
ResultType operator()( const T* a, const T* b, int size ) const
|
||
|
{
|
||
|
return (ResultType)std::sqrt((double)normL2Sqr<ValueType, ResultType>(a, b, size));
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Manhattan distance (city block distance) functor
|
||
|
*/
|
||
|
template<class T>
|
||
|
struct L1
|
||
|
{
|
||
|
static const NormTypes normType = NORM_L1;
|
||
|
typedef T ValueType;
|
||
|
typedef typename Accumulator<T>::Type ResultType;
|
||
|
|
||
|
ResultType operator()( const T* a, const T* b, int size ) const
|
||
|
{
|
||
|
return normL1<ValueType, ResultType>(a, b, size);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/****************************************************************************************\
|
||
|
* DescriptorMatcher *
|
||
|
\****************************************************************************************/
|
||
|
|
||
|
//! @addtogroup features2d_match
|
||
|
//! @{
|
||
|
|
||
|
/** @brief Abstract base class for matching keypoint descriptors.
|
||
|
|
||
|
It has two groups of match methods: for matching descriptors of an image with another image or with
|
||
|
an image set.
|
||
|
*/
|
||
|
class CV_EXPORTS_W DescriptorMatcher : public Algorithm
|
||
|
{
|
||
|
public:
|
||
|
enum MatcherType
|
||
|
{
|
||
|
FLANNBASED = 1,
|
||
|
BRUTEFORCE = 2,
|
||
|
BRUTEFORCE_L1 = 3,
|
||
|
BRUTEFORCE_HAMMING = 4,
|
||
|
BRUTEFORCE_HAMMINGLUT = 5,
|
||
|
BRUTEFORCE_SL2 = 6
|
||
|
};
|
||
|
|
||
|
virtual ~DescriptorMatcher();
|
||
|
|
||
|
/** @brief Adds descriptors to train a CPU(trainDescCollectionis) or GPU(utrainDescCollectionis) descriptor
|
||
|
collection.
|
||
|
|
||
|
If the collection is not empty, the new descriptors are added to existing train descriptors.
|
||
|
|
||
|
@param descriptors Descriptors to add. Each descriptors[i] is a set of descriptors from the same
|
||
|
train image.
|
||
|
*/
|
||
|
CV_WRAP virtual void add( InputArrayOfArrays descriptors );
|
||
|
|
||
|
/** @brief Returns a constant link to the train descriptor collection trainDescCollection .
|
||
|
*/
|
||
|
CV_WRAP const std::vector<Mat>& getTrainDescriptors() const;
|
||
|
|
||
|
/** @brief Clears the train descriptor collections.
|
||
|
*/
|
||
|
CV_WRAP virtual void clear() CV_OVERRIDE;
|
||
|
|
||
|
/** @brief Returns true if there are no train descriptors in the both collections.
|
||
|
*/
|
||
|
CV_WRAP virtual bool empty() const CV_OVERRIDE;
|
||
|
|
||
|
/** @brief Returns true if the descriptor matcher supports masking permissible matches.
|
||
|
*/
|
||
|
CV_WRAP virtual bool isMaskSupported() const = 0;
|
||
|
|
||
|
/** @brief Trains a descriptor matcher
|
||
|
|
||
|
Trains a descriptor matcher (for example, the flann index). In all methods to match, the method
|
||
|
train() is run every time before matching. Some descriptor matchers (for example, BruteForceMatcher)
|
||
|
have an empty implementation of this method. Other matchers really train their inner structures (for
|
||
|
example, FlannBasedMatcher trains flann::Index ).
|
||
|
*/
|
||
|
CV_WRAP virtual void train();
|
||
|
|
||
|
/** @brief Finds the best match for each descriptor from a query set.
|
||
|
|
||
|
@param queryDescriptors Query set of descriptors.
|
||
|
@param trainDescriptors Train set of descriptors. This set is not added to the train descriptors
|
||
|
collection stored in the class object.
|
||
|
@param matches Matches. If a query descriptor is masked out in mask , no match is added for this
|
||
|
descriptor. So, matches size may be smaller than the query descriptors count.
|
||
|
@param mask Mask specifying permissible matches between an input query and train matrices of
|
||
|
descriptors.
|
||
|
|
||
|
In the first variant of this method, the train descriptors are passed as an input argument. In the
|
||
|
second variant of the method, train descriptors collection that was set by DescriptorMatcher::add is
|
||
|
used. Optional mask (or masks) can be passed to specify which query and training descriptors can be
|
||
|
matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if
|
||
|
mask.at\<uchar\>(i,j) is non-zero.
|
||
|
*/
|
||
|
CV_WRAP void match( InputArray queryDescriptors, InputArray trainDescriptors,
|
||
|
CV_OUT std::vector<DMatch>& matches, InputArray mask=noArray() ) const;
|
||
|
|
||
|
/** @brief Finds the k best matches for each descriptor from a query set.
|
||
|
|
||
|
@param queryDescriptors Query set of descriptors.
|
||
|
@param trainDescriptors Train set of descriptors. This set is not added to the train descriptors
|
||
|
collection stored in the class object.
|
||
|
@param mask Mask specifying permissible matches between an input query and train matrices of
|
||
|
descriptors.
|
||
|
@param matches Matches. Each matches[i] is k or less matches for the same query descriptor.
|
||
|
@param k Count of best matches found per each query descriptor or less if a query descriptor has
|
||
|
less than k possible matches in total.
|
||
|
@param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is
|
||
|
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
|
||
|
the matches vector does not contain matches for fully masked-out query descriptors.
|
||
|
|
||
|
These extended variants of DescriptorMatcher::match methods find several best matches for each query
|
||
|
descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::match
|
||
|
for the details about query and train descriptors.
|
||
|
*/
|
||
|
CV_WRAP void knnMatch( InputArray queryDescriptors, InputArray trainDescriptors,
|
||
|
CV_OUT std::vector<std::vector<DMatch> >& matches, int k,
|
||
|
InputArray mask=noArray(), bool compactResult=false ) const;
|
||
|
|
||
|
/** @brief For each query descriptor, finds the training descriptors not farther than the specified distance.
|
||
|
|
||
|
@param queryDescriptors Query set of descriptors.
|
||
|
@param trainDescriptors Train set of descriptors. This set is not added to the train descriptors
|
||
|
collection stored in the class object.
|
||
|
@param matches Found matches.
|
||
|
@param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is
|
||
|
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
|
||
|
the matches vector does not contain matches for fully masked-out query descriptors.
|
||
|
@param maxDistance Threshold for the distance between matched descriptors. Distance means here
|
||
|
metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured
|
||
|
in Pixels)!
|
||
|
@param mask Mask specifying permissible matches between an input query and train matrices of
|
||
|
descriptors.
|
||
|
|
||
|
For each query descriptor, the methods find such training descriptors that the distance between the
|
||
|
query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are
|
||
|
returned in the distance increasing order.
|
||
|
*/
|
||
|
CV_WRAP void radiusMatch( InputArray queryDescriptors, InputArray trainDescriptors,
|
||
|
CV_OUT std::vector<std::vector<DMatch> >& matches, float maxDistance,
|
||
|
InputArray mask=noArray(), bool compactResult=false ) const;
|
||
|
|
||
|
/** @overload
|
||
|
@param queryDescriptors Query set of descriptors.
|
||
|
@param matches Matches. If a query descriptor is masked out in mask , no match is added for this
|
||
|
descriptor. So, matches size may be smaller than the query descriptors count.
|
||
|
@param masks Set of masks. Each masks[i] specifies permissible matches between the input query
|
||
|
descriptors and stored train descriptors from the i-th image trainDescCollection[i].
|
||
|
*/
|
||
|
CV_WRAP void match( InputArray queryDescriptors, CV_OUT std::vector<DMatch>& matches,
|
||
|
InputArrayOfArrays masks=noArray() );
|
||
|
/** @overload
|
||
|
@param queryDescriptors Query set of descriptors.
|
||
|
@param matches Matches. Each matches[i] is k or less matches for the same query descriptor.
|
||
|
@param k Count of best matches found per each query descriptor or less if a query descriptor has
|
||
|
less than k possible matches in total.
|
||
|
@param masks Set of masks. Each masks[i] specifies permissible matches between the input query
|
||
|
descriptors and stored train descriptors from the i-th image trainDescCollection[i].
|
||
|
@param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is
|
||
|
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
|
||
|
the matches vector does not contain matches for fully masked-out query descriptors.
|
||
|
*/
|
||
|
CV_WRAP void knnMatch( InputArray queryDescriptors, CV_OUT std::vector<std::vector<DMatch> >& matches, int k,
|
||
|
InputArrayOfArrays masks=noArray(), bool compactResult=false );
|
||
|
/** @overload
|
||
|
@param queryDescriptors Query set of descriptors.
|
||
|
@param matches Found matches.
|
||
|
@param maxDistance Threshold for the distance between matched descriptors. Distance means here
|
||
|
metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured
|
||
|
in Pixels)!
|
||
|
@param masks Set of masks. Each masks[i] specifies permissible matches between the input query
|
||
|
descriptors and stored train descriptors from the i-th image trainDescCollection[i].
|
||
|
@param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is
|
||
|
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
|
||
|
the matches vector does not contain matches for fully masked-out query descriptors.
|
||
|
*/
|
||
|
CV_WRAP void radiusMatch( InputArray queryDescriptors, CV_OUT std::vector<std::vector<DMatch> >& matches, float maxDistance,
|
||
|
InputArrayOfArrays masks=noArray(), bool compactResult=false );
|
||
|
|
||
|
|
||
|
CV_WRAP void write( const String& fileName ) const
|
||
|
{
|
||
|
FileStorage fs(fileName, FileStorage::WRITE);
|
||
|
write(fs);
|
||
|
}
|
||
|
|
||
|
CV_WRAP void read( const String& fileName )
|
||
|
{
|
||
|
FileStorage fs(fileName, FileStorage::READ);
|
||
|
read(fs.root());
|
||
|
}
|
||
|
// Reads matcher object from a file node
|
||
|
// see corresponding cv::Algorithm method
|
||
|
CV_WRAP virtual void read( const FileNode& ) CV_OVERRIDE;
|
||
|
// Writes matcher object to a file storage
|
||
|
virtual void write( FileStorage& ) const CV_OVERRIDE;
|
||
|
|
||
|
/** @brief Clones the matcher.
|
||
|
|
||
|
@param emptyTrainData If emptyTrainData is false, the method creates a deep copy of the object,
|
||
|
that is, copies both parameters and train data. If emptyTrainData is true, the method creates an
|
||
|
object copy with the current parameters but with empty train data.
|
||
|
*/
|
||
|
CV_WRAP CV_NODISCARD_STD virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const = 0;
|
||
|
|
||
|
/** @brief Creates a descriptor matcher of a given type with the default parameters (using default
|
||
|
constructor).
|
||
|
|
||
|
@param descriptorMatcherType Descriptor matcher type. Now the following matcher types are
|
||
|
supported:
|
||
|
- `BruteForce` (it uses L2 )
|
||
|
- `BruteForce-L1`
|
||
|
- `BruteForce-Hamming`
|
||
|
- `BruteForce-Hamming(2)`
|
||
|
- `FlannBased`
|
||
|
*/
|
||
|
CV_WRAP static Ptr<DescriptorMatcher> create( const String& descriptorMatcherType );
|
||
|
|
||
|
CV_WRAP static Ptr<DescriptorMatcher> create( const DescriptorMatcher::MatcherType& matcherType );
|
||
|
|
||
|
|
||
|
// see corresponding cv::Algorithm method
|
||
|
CV_WRAP inline void write(FileStorage& fs, const String& name) const { Algorithm::write(fs, name); }
|
||
|
#if CV_VERSION_MAJOR < 5
|
||
|
inline void write(const Ptr<FileStorage>& fs, const String& name) const { CV_Assert(fs); Algorithm::write(*fs, name); }
|
||
|
#endif
|
||
|
|
||
|
protected:
|
||
|
/**
|
||
|
* Class to work with descriptors from several images as with one merged matrix.
|
||
|
* It is used e.g. in FlannBasedMatcher.
|
||
|
*/
|
||
|
class CV_EXPORTS DescriptorCollection
|
||
|
{
|
||
|
public:
|
||
|
DescriptorCollection();
|
||
|
DescriptorCollection( const DescriptorCollection& collection );
|
||
|
virtual ~DescriptorCollection();
|
||
|
|
||
|
// Vector of matrices "descriptors" will be merged to one matrix "mergedDescriptors" here.
|
||
|
void set( const std::vector<Mat>& descriptors );
|
||
|
virtual void clear();
|
||
|
|
||
|
const Mat& getDescriptors() const;
|
||
|
Mat getDescriptor( int imgIdx, int localDescIdx ) const;
|
||
|
Mat getDescriptor( int globalDescIdx ) const;
|
||
|
void getLocalIdx( int globalDescIdx, int& imgIdx, int& localDescIdx ) const;
|
||
|
|
||
|
int size() const;
|
||
|
|
||
|
protected:
|
||
|
Mat mergedDescriptors;
|
||
|
std::vector<int> startIdxs;
|
||
|
};
|
||
|
|
||
|
//! In fact the matching is implemented only by the following two methods. These methods suppose
|
||
|
//! that the class object has been trained already. Public match methods call these methods
|
||
|
//! after calling train().
|
||
|
virtual void knnMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, int k,
|
||
|
InputArrayOfArrays masks=noArray(), bool compactResult=false ) = 0;
|
||
|
virtual void radiusMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, float maxDistance,
|
||
|
InputArrayOfArrays masks=noArray(), bool compactResult=false ) = 0;
|
||
|
|
||
|
static bool isPossibleMatch( InputArray mask, int queryIdx, int trainIdx );
|
||
|
static bool isMaskedOut( InputArrayOfArrays masks, int queryIdx );
|
||
|
|
||
|
CV_NODISCARD_STD static Mat clone_op( Mat m ) { return m.clone(); }
|
||
|
void checkMasks( InputArrayOfArrays masks, int queryDescriptorsCount ) const;
|
||
|
|
||
|
//! Collection of descriptors from train images.
|
||
|
std::vector<Mat> trainDescCollection;
|
||
|
std::vector<UMat> utrainDescCollection;
|
||
|
};
|
||
|
|
||
|
/** @brief Brute-force descriptor matcher.
|
||
|
|
||
|
For each descriptor in the first set, this matcher finds the closest descriptor in the second set
|
||
|
by trying each one. This descriptor matcher supports masking permissible matches of descriptor
|
||
|
sets.
|
||
|
*/
|
||
|
class CV_EXPORTS_W BFMatcher : public DescriptorMatcher
|
||
|
{
|
||
|
public:
|
||
|
/** @brief Brute-force matcher constructor (obsolete). Please use BFMatcher.create()
|
||
|
*
|
||
|
*
|
||
|
*/
|
||
|
CV_WRAP BFMatcher( int normType=NORM_L2, bool crossCheck=false );
|
||
|
|
||
|
virtual ~BFMatcher() {}
|
||
|
|
||
|
virtual bool isMaskSupported() const CV_OVERRIDE { return true; }
|
||
|
|
||
|
/** @brief Brute-force matcher create method.
|
||
|
@param normType One of NORM_L1, NORM_L2, NORM_HAMMING, NORM_HAMMING2. L1 and L2 norms are
|
||
|
preferable choices for SIFT and SURF descriptors, NORM_HAMMING should be used with ORB, BRISK and
|
||
|
BRIEF, NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4 (see ORB::ORB constructor
|
||
|
description).
|
||
|
@param crossCheck If it is false, this is will be default BFMatcher behaviour when it finds the k
|
||
|
nearest neighbors for each query descriptor. If crossCheck==true, then the knnMatch() method with
|
||
|
k=1 will only return pairs (i,j) such that for i-th query descriptor the j-th descriptor in the
|
||
|
matcher's collection is the nearest and vice versa, i.e. the BFMatcher will only return consistent
|
||
|
pairs. Such technique usually produces best results with minimal number of outliers when there are
|
||
|
enough matches. This is alternative to the ratio test, used by D. Lowe in SIFT paper.
|
||
|
*/
|
||
|
CV_WRAP static Ptr<BFMatcher> create( int normType=NORM_L2, bool crossCheck=false ) ;
|
||
|
|
||
|
CV_NODISCARD_STD virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const CV_OVERRIDE;
|
||
|
protected:
|
||
|
virtual void knnMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, int k,
|
||
|
InputArrayOfArrays masks=noArray(), bool compactResult=false ) CV_OVERRIDE;
|
||
|
virtual void radiusMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, float maxDistance,
|
||
|
InputArrayOfArrays masks=noArray(), bool compactResult=false ) CV_OVERRIDE;
|
||
|
|
||
|
int normType;
|
||
|
bool crossCheck;
|
||
|
};
|
||
|
|
||
|
#if defined(HAVE_OPENCV_FLANN) || defined(CV_DOXYGEN)
|
||
|
|
||
|
/** @brief Flann-based descriptor matcher.
|
||
|
|
||
|
This matcher trains cv::flann::Index on a train descriptor collection and calls its nearest search
|
||
|
methods to find the best matches. So, this matcher may be faster when matching a large train
|
||
|
collection than the brute force matcher. FlannBasedMatcher does not support masking permissible
|
||
|
matches of descriptor sets because flann::Index does not support this. :
|
||
|
*/
|
||
|
class CV_EXPORTS_W FlannBasedMatcher : public DescriptorMatcher
|
||
|
{
|
||
|
public:
|
||
|
CV_WRAP FlannBasedMatcher( const Ptr<flann::IndexParams>& indexParams=makePtr<flann::KDTreeIndexParams>(),
|
||
|
const Ptr<flann::SearchParams>& searchParams=makePtr<flann::SearchParams>() );
|
||
|
|
||
|
virtual void add( InputArrayOfArrays descriptors ) CV_OVERRIDE;
|
||
|
virtual void clear() CV_OVERRIDE;
|
||
|
|
||
|
// Reads matcher object from a file node
|
||
|
virtual void read( const FileNode& ) CV_OVERRIDE;
|
||
|
// Writes matcher object to a file storage
|
||
|
virtual void write( FileStorage& ) const CV_OVERRIDE;
|
||
|
|
||
|
virtual void train() CV_OVERRIDE;
|
||
|
virtual bool isMaskSupported() const CV_OVERRIDE;
|
||
|
|
||
|
CV_WRAP static Ptr<FlannBasedMatcher> create();
|
||
|
|
||
|
CV_NODISCARD_STD virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const CV_OVERRIDE;
|
||
|
protected:
|
||
|
static void convertToDMatches( const DescriptorCollection& descriptors,
|
||
|
const Mat& indices, const Mat& distances,
|
||
|
std::vector<std::vector<DMatch> >& matches );
|
||
|
|
||
|
virtual void knnMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, int k,
|
||
|
InputArrayOfArrays masks=noArray(), bool compactResult=false ) CV_OVERRIDE;
|
||
|
virtual void radiusMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, float maxDistance,
|
||
|
InputArrayOfArrays masks=noArray(), bool compactResult=false ) CV_OVERRIDE;
|
||
|
|
||
|
Ptr<flann::IndexParams> indexParams;
|
||
|
Ptr<flann::SearchParams> searchParams;
|
||
|
Ptr<flann::Index> flannIndex;
|
||
|
|
||
|
DescriptorCollection mergedDescriptors;
|
||
|
int addedDescCount;
|
||
|
};
|
||
|
|
||
|
#endif
|
||
|
|
||
|
//! @} features2d_match
|
||
|
|
||
|
/****************************************************************************************\
|
||
|
* Drawing functions *
|
||
|
\****************************************************************************************/
|
||
|
|
||
|
//! @addtogroup features2d_draw
|
||
|
//! @{
|
||
|
|
||
|
enum struct DrawMatchesFlags
|
||
|
{
|
||
|
DEFAULT = 0, //!< Output image matrix will be created (Mat::create),
|
||
|
//!< i.e. existing memory of output image may be reused.
|
||
|
//!< Two source image, matches and single keypoints will be drawn.
|
||
|
//!< For each keypoint only the center point will be drawn (without
|
||
|
//!< the circle around keypoint with keypoint size and orientation).
|
||
|
DRAW_OVER_OUTIMG = 1, //!< Output image matrix will not be created (Mat::create).
|
||
|
//!< Matches will be drawn on existing content of output image.
|
||
|
NOT_DRAW_SINGLE_POINTS = 2, //!< Single keypoints will not be drawn.
|
||
|
DRAW_RICH_KEYPOINTS = 4 //!< For each keypoint the circle around keypoint with keypoint size and
|
||
|
//!< orientation will be drawn.
|
||
|
};
|
||
|
CV_ENUM_FLAGS(DrawMatchesFlags)
|
||
|
|
||
|
/** @brief Draws keypoints.
|
||
|
|
||
|
@param image Source image.
|
||
|
@param keypoints Keypoints from the source image.
|
||
|
@param outImage Output image. Its content depends on the flags value defining what is drawn in the
|
||
|
output image. See possible flags bit values below.
|
||
|
@param color Color of keypoints.
|
||
|
@param flags Flags setting drawing features. Possible flags bit values are defined by
|
||
|
DrawMatchesFlags. See details above in drawMatches .
|
||
|
|
||
|
@note
|
||
|
For Python API, flags are modified as cv.DRAW_MATCHES_FLAGS_DEFAULT,
|
||
|
cv.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS, cv.DRAW_MATCHES_FLAGS_DRAW_OVER_OUTIMG,
|
||
|
cv.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS
|
||
|
*/
|
||
|
CV_EXPORTS_W void drawKeypoints( InputArray image, const std::vector<KeyPoint>& keypoints, InputOutputArray outImage,
|
||
|
const Scalar& color=Scalar::all(-1), DrawMatchesFlags flags=DrawMatchesFlags::DEFAULT );
|
||
|
|
||
|
/** @brief Draws the found matches of keypoints from two images.
|
||
|
|
||
|
@param img1 First source image.
|
||
|
@param keypoints1 Keypoints from the first source image.
|
||
|
@param img2 Second source image.
|
||
|
@param keypoints2 Keypoints from the second source image.
|
||
|
@param matches1to2 Matches from the first image to the second one, which means that keypoints1[i]
|
||
|
has a corresponding point in keypoints2[matches[i]] .
|
||
|
@param outImg Output image. Its content depends on the flags value defining what is drawn in the
|
||
|
output image. See possible flags bit values below.
|
||
|
@param matchColor Color of matches (lines and connected keypoints). If matchColor==Scalar::all(-1)
|
||
|
, the color is generated randomly.
|
||
|
@param singlePointColor Color of single keypoints (circles), which means that keypoints do not
|
||
|
have the matches. If singlePointColor==Scalar::all(-1) , the color is generated randomly.
|
||
|
@param matchesMask Mask determining which matches are drawn. If the mask is empty, all matches are
|
||
|
drawn.
|
||
|
@param flags Flags setting drawing features. Possible flags bit values are defined by
|
||
|
DrawMatchesFlags.
|
||
|
|
||
|
This function draws matches of keypoints from two images in the output image. Match is a line
|
||
|
connecting two keypoints (circles). See cv::DrawMatchesFlags.
|
||
|
*/
|
||
|
CV_EXPORTS_W void drawMatches( InputArray img1, const std::vector<KeyPoint>& keypoints1,
|
||
|
InputArray img2, const std::vector<KeyPoint>& keypoints2,
|
||
|
const std::vector<DMatch>& matches1to2, InputOutputArray outImg,
|
||
|
const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1),
|
||
|
const std::vector<char>& matchesMask=std::vector<char>(), DrawMatchesFlags flags=DrawMatchesFlags::DEFAULT );
|
||
|
|
||
|
/** @overload */
|
||
|
CV_EXPORTS_W void drawMatches( InputArray img1, const std::vector<KeyPoint>& keypoints1,
|
||
|
InputArray img2, const std::vector<KeyPoint>& keypoints2,
|
||
|
const std::vector<DMatch>& matches1to2, InputOutputArray outImg,
|
||
|
const int matchesThickness, const Scalar& matchColor=Scalar::all(-1),
|
||
|
const Scalar& singlePointColor=Scalar::all(-1), const std::vector<char>& matchesMask=std::vector<char>(),
|
||
|
DrawMatchesFlags flags=DrawMatchesFlags::DEFAULT );
|
||
|
|
||
|
CV_EXPORTS_AS(drawMatchesKnn) void drawMatches( InputArray img1, const std::vector<KeyPoint>& keypoints1,
|
||
|
InputArray img2, const std::vector<KeyPoint>& keypoints2,
|
||
|
const std::vector<std::vector<DMatch> >& matches1to2, InputOutputArray outImg,
|
||
|
const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1),
|
||
|
const std::vector<std::vector<char> >& matchesMask=std::vector<std::vector<char> >(), DrawMatchesFlags flags=DrawMatchesFlags::DEFAULT );
|
||
|
|
||
|
//! @} features2d_draw
|
||
|
|
||
|
/****************************************************************************************\
|
||
|
* Functions to evaluate the feature detectors and [generic] descriptor extractors *
|
||
|
\****************************************************************************************/
|
||
|
|
||
|
CV_EXPORTS void evaluateFeatureDetector( const Mat& img1, const Mat& img2, const Mat& H1to2,
|
||
|
std::vector<KeyPoint>* keypoints1, std::vector<KeyPoint>* keypoints2,
|
||
|
float& repeatability, int& correspCount,
|
||
|
const Ptr<FeatureDetector>& fdetector=Ptr<FeatureDetector>() );
|
||
|
|
||
|
CV_EXPORTS void computeRecallPrecisionCurve( const std::vector<std::vector<DMatch> >& matches1to2,
|
||
|
const std::vector<std::vector<uchar> >& correctMatches1to2Mask,
|
||
|
std::vector<Point2f>& recallPrecisionCurve );
|
||
|
|
||
|
CV_EXPORTS float getRecall( const std::vector<Point2f>& recallPrecisionCurve, float l_precision );
|
||
|
CV_EXPORTS int getNearestPoint( const std::vector<Point2f>& recallPrecisionCurve, float l_precision );
|
||
|
|
||
|
/****************************************************************************************\
|
||
|
* Bag of visual words *
|
||
|
\****************************************************************************************/
|
||
|
|
||
|
//! @addtogroup features2d_category
|
||
|
//! @{
|
||
|
|
||
|
/** @brief Abstract base class for training the *bag of visual words* vocabulary from a set of descriptors.
|
||
|
|
||
|
For details, see, for example, *Visual Categorization with Bags of Keypoints* by Gabriella Csurka,
|
||
|
Christopher R. Dance, Lixin Fan, Jutta Willamowski, Cedric Bray, 2004. :
|
||
|
*/
|
||
|
class CV_EXPORTS_W BOWTrainer
|
||
|
{
|
||
|
public:
|
||
|
BOWTrainer();
|
||
|
virtual ~BOWTrainer();
|
||
|
|
||
|
/** @brief Adds descriptors to a training set.
|
||
|
|
||
|
@param descriptors Descriptors to add to a training set. Each row of the descriptors matrix is a
|
||
|
descriptor.
|
||
|
|
||
|
The training set is clustered using clustermethod to construct the vocabulary.
|
||
|
*/
|
||
|
CV_WRAP void add( const Mat& descriptors );
|
||
|
|
||
|
/** @brief Returns a training set of descriptors.
|
||
|
*/
|
||
|
CV_WRAP const std::vector<Mat>& getDescriptors() const;
|
||
|
|
||
|
/** @brief Returns the count of all descriptors stored in the training set.
|
||
|
*/
|
||
|
CV_WRAP int descriptorsCount() const;
|
||
|
|
||
|
CV_WRAP virtual void clear();
|
||
|
|
||
|
/** @overload */
|
||
|
CV_WRAP virtual Mat cluster() const = 0;
|
||
|
|
||
|
/** @brief Clusters train descriptors.
|
||
|
|
||
|
@param descriptors Descriptors to cluster. Each row of the descriptors matrix is a descriptor.
|
||
|
Descriptors are not added to the inner train descriptor set.
|
||
|
|
||
|
The vocabulary consists of cluster centers. So, this method returns the vocabulary. In the first
|
||
|
variant of the method, train descriptors stored in the object are clustered. In the second variant,
|
||
|
input descriptors are clustered.
|
||
|
*/
|
||
|
CV_WRAP virtual Mat cluster( const Mat& descriptors ) const = 0;
|
||
|
|
||
|
protected:
|
||
|
std::vector<Mat> descriptors;
|
||
|
int size;
|
||
|
};
|
||
|
|
||
|
/** @brief kmeans -based class to train visual vocabulary using the *bag of visual words* approach. :
|
||
|
*/
|
||
|
class CV_EXPORTS_W BOWKMeansTrainer : public BOWTrainer
|
||
|
{
|
||
|
public:
|
||
|
/** @brief The constructor.
|
||
|
|
||
|
@see cv::kmeans
|
||
|
*/
|
||
|
CV_WRAP BOWKMeansTrainer( int clusterCount, const TermCriteria& termcrit=TermCriteria(),
|
||
|
int attempts=3, int flags=KMEANS_PP_CENTERS );
|
||
|
virtual ~BOWKMeansTrainer();
|
||
|
|
||
|
// Returns trained vocabulary (i.e. cluster centers).
|
||
|
CV_WRAP virtual Mat cluster() const CV_OVERRIDE;
|
||
|
CV_WRAP virtual Mat cluster( const Mat& descriptors ) const CV_OVERRIDE;
|
||
|
|
||
|
protected:
|
||
|
|
||
|
int clusterCount;
|
||
|
TermCriteria termcrit;
|
||
|
int attempts;
|
||
|
int flags;
|
||
|
};
|
||
|
|
||
|
/** @brief Class to compute an image descriptor using the *bag of visual words*.
|
||
|
|
||
|
Such a computation consists of the following steps:
|
||
|
|
||
|
1. Compute descriptors for a given image and its keypoints set.
|
||
|
2. Find the nearest visual words from the vocabulary for each keypoint descriptor.
|
||
|
3. Compute the bag-of-words image descriptor as is a normalized histogram of vocabulary words
|
||
|
encountered in the image. The i-th bin of the histogram is a frequency of i-th word of the
|
||
|
vocabulary in the given image.
|
||
|
*/
|
||
|
class CV_EXPORTS_W BOWImgDescriptorExtractor
|
||
|
{
|
||
|
public:
|
||
|
/** @brief The constructor.
|
||
|
|
||
|
@param dextractor Descriptor extractor that is used to compute descriptors for an input image and
|
||
|
its keypoints.
|
||
|
@param dmatcher Descriptor matcher that is used to find the nearest word of the trained vocabulary
|
||
|
for each keypoint descriptor of the image.
|
||
|
*/
|
||
|
CV_WRAP BOWImgDescriptorExtractor( const Ptr<DescriptorExtractor>& dextractor,
|
||
|
const Ptr<DescriptorMatcher>& dmatcher );
|
||
|
/** @overload */
|
||
|
BOWImgDescriptorExtractor( const Ptr<DescriptorMatcher>& dmatcher );
|
||
|
virtual ~BOWImgDescriptorExtractor();
|
||
|
|
||
|
/** @brief Sets a visual vocabulary.
|
||
|
|
||
|
@param vocabulary Vocabulary (can be trained using the inheritor of BOWTrainer ). Each row of the
|
||
|
vocabulary is a visual word (cluster center).
|
||
|
*/
|
||
|
CV_WRAP void setVocabulary( const Mat& vocabulary );
|
||
|
|
||
|
/** @brief Returns the set vocabulary.
|
||
|
*/
|
||
|
CV_WRAP const Mat& getVocabulary() const;
|
||
|
|
||
|
/** @brief Computes an image descriptor using the set visual vocabulary.
|
||
|
|
||
|
@param image Image, for which the descriptor is computed.
|
||
|
@param keypoints Keypoints detected in the input image.
|
||
|
@param imgDescriptor Computed output image descriptor.
|
||
|
@param pointIdxsOfClusters Indices of keypoints that belong to the cluster. This means that
|
||
|
pointIdxsOfClusters[i] are keypoint indices that belong to the i -th cluster (word of vocabulary)
|
||
|
returned if it is non-zero.
|
||
|
@param descriptors Descriptors of the image keypoints that are returned if they are non-zero.
|
||
|
*/
|
||
|
void compute( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray imgDescriptor,
|
||
|
std::vector<std::vector<int> >* pointIdxsOfClusters=0, Mat* descriptors=0 );
|
||
|
/** @overload
|
||
|
@param keypointDescriptors Computed descriptors to match with vocabulary.
|
||
|
@param imgDescriptor Computed output image descriptor.
|
||
|
@param pointIdxsOfClusters Indices of keypoints that belong to the cluster. This means that
|
||
|
pointIdxsOfClusters[i] are keypoint indices that belong to the i -th cluster (word of vocabulary)
|
||
|
returned if it is non-zero.
|
||
|
*/
|
||
|
void compute( InputArray keypointDescriptors, OutputArray imgDescriptor,
|
||
|
std::vector<std::vector<int> >* pointIdxsOfClusters=0 );
|
||
|
// compute() is not constant because DescriptorMatcher::match is not constant
|
||
|
|
||
|
CV_WRAP_AS(compute) void compute2( const Mat& image, std::vector<KeyPoint>& keypoints, CV_OUT Mat& imgDescriptor )
|
||
|
{ compute(image,keypoints,imgDescriptor); }
|
||
|
|
||
|
/** @brief Returns an image descriptor size if the vocabulary is set. Otherwise, it returns 0.
|
||
|
*/
|
||
|
CV_WRAP int descriptorSize() const;
|
||
|
|
||
|
/** @brief Returns an image descriptor type.
|
||
|
*/
|
||
|
CV_WRAP int descriptorType() const;
|
||
|
|
||
|
protected:
|
||
|
Mat vocabulary;
|
||
|
Ptr<DescriptorExtractor> dextractor;
|
||
|
Ptr<DescriptorMatcher> dmatcher;
|
||
|
};
|
||
|
|
||
|
//! @} features2d_category
|
||
|
|
||
|
//! @} features2d
|
||
|
|
||
|
} /* namespace cv */
|
||
|
|
||
|
#endif
|