3797 lines
162 KiB
C++
3797 lines
162 KiB
C++
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
#ifndef OPENCV_CORE_MAT_HPP
|
||
|
#define OPENCV_CORE_MAT_HPP
|
||
|
|
||
|
#ifndef __cplusplus
|
||
|
# error mat.hpp header must be compiled as C++
|
||
|
#endif
|
||
|
|
||
|
#include "opencv2/core/matx.hpp"
|
||
|
#include "opencv2/core/types.hpp"
|
||
|
|
||
|
#include "opencv2/core/bufferpool.hpp"
|
||
|
|
||
|
#include <type_traits>
|
||
|
|
||
|
namespace cv
|
||
|
{
|
||
|
|
||
|
//! @addtogroup core_basic
|
||
|
//! @{
|
||
|
|
||
|
enum AccessFlag { ACCESS_READ=1<<24, ACCESS_WRITE=1<<25,
|
||
|
ACCESS_RW=3<<24, ACCESS_MASK=ACCESS_RW, ACCESS_FAST=1<<26 };
|
||
|
CV_ENUM_FLAGS(AccessFlag)
|
||
|
__CV_ENUM_FLAGS_BITWISE_AND(AccessFlag, int, AccessFlag)
|
||
|
|
||
|
CV__DEBUG_NS_BEGIN
|
||
|
|
||
|
class CV_EXPORTS _OutputArray;
|
||
|
|
||
|
//////////////////////// Input/Output Array Arguments /////////////////////////////////
|
||
|
|
||
|
/** @brief This is the proxy class for passing read-only input arrays into OpenCV functions.
|
||
|
|
||
|
It is defined as:
|
||
|
@code
|
||
|
typedef const _InputArray& InputArray;
|
||
|
@endcode
|
||
|
where _InputArray is a class that can be constructed from `Mat`, `Mat_<T>`, `Matx<T, m, n>`,
|
||
|
`std::vector<T>`, `std::vector<std::vector<T> >`, `std::vector<Mat>`, `std::vector<Mat_<T> >`,
|
||
|
`UMat`, `std::vector<UMat>` or `double`. It can also be constructed from a matrix expression.
|
||
|
|
||
|
Since this is mostly implementation-level class, and its interface may change in future versions, we
|
||
|
do not describe it in details. There are a few key things, though, that should be kept in mind:
|
||
|
|
||
|
- When you see in the reference manual or in OpenCV source code a function that takes
|
||
|
InputArray, it means that you can actually pass `Mat`, `Matx`, `vector<T>` etc. (see above the
|
||
|
complete list).
|
||
|
- Optional input arguments: If some of the input arrays may be empty, pass cv::noArray() (or
|
||
|
simply cv::Mat() as you probably did before).
|
||
|
- The class is designed solely for passing parameters. That is, normally you *should not*
|
||
|
declare class members, local and global variables of this type.
|
||
|
- If you want to design your own function or a class method that can operate of arrays of
|
||
|
multiple types, you can use InputArray (or OutputArray) for the respective parameters. Inside
|
||
|
a function you should use _InputArray::getMat() method to construct a matrix header for the
|
||
|
array (without copying data). _InputArray::kind() can be used to distinguish Mat from
|
||
|
`vector<>` etc., but normally it is not needed.
|
||
|
|
||
|
Here is how you can use a function that takes InputArray :
|
||
|
@code
|
||
|
std::vector<Point2f> vec;
|
||
|
// points or a circle
|
||
|
for( int i = 0; i < 30; i++ )
|
||
|
vec.push_back(Point2f((float)(100 + 30*cos(i*CV_PI*2/5)),
|
||
|
(float)(100 - 30*sin(i*CV_PI*2/5))));
|
||
|
cv::transform(vec, vec, cv::Matx23f(0.707, -0.707, 10, 0.707, 0.707, 20));
|
||
|
@endcode
|
||
|
That is, we form an STL vector containing points, and apply in-place affine transformation to the
|
||
|
vector using the 2x3 matrix created inline as `Matx<float, 2, 3>` instance.
|
||
|
|
||
|
Here is how such a function can be implemented (for simplicity, we implement a very specific case of
|
||
|
it, according to the assertion statement inside) :
|
||
|
@code
|
||
|
void myAffineTransform(InputArray _src, OutputArray _dst, InputArray _m)
|
||
|
{
|
||
|
// get Mat headers for input arrays. This is O(1) operation,
|
||
|
// unless _src and/or _m are matrix expressions.
|
||
|
Mat src = _src.getMat(), m = _m.getMat();
|
||
|
CV_Assert( src.type() == CV_32FC2 && m.type() == CV_32F && m.size() == Size(3, 2) );
|
||
|
|
||
|
// [re]create the output array so that it has the proper size and type.
|
||
|
// In case of Mat it calls Mat::create, in case of STL vector it calls vector::resize.
|
||
|
_dst.create(src.size(), src.type());
|
||
|
Mat dst = _dst.getMat();
|
||
|
|
||
|
for( int i = 0; i < src.rows; i++ )
|
||
|
for( int j = 0; j < src.cols; j++ )
|
||
|
{
|
||
|
Point2f pt = src.at<Point2f>(i, j);
|
||
|
dst.at<Point2f>(i, j) = Point2f(m.at<float>(0, 0)*pt.x +
|
||
|
m.at<float>(0, 1)*pt.y +
|
||
|
m.at<float>(0, 2),
|
||
|
m.at<float>(1, 0)*pt.x +
|
||
|
m.at<float>(1, 1)*pt.y +
|
||
|
m.at<float>(1, 2));
|
||
|
}
|
||
|
}
|
||
|
@endcode
|
||
|
There is another related type, InputArrayOfArrays, which is currently defined as a synonym for
|
||
|
InputArray:
|
||
|
@code
|
||
|
typedef InputArray InputArrayOfArrays;
|
||
|
@endcode
|
||
|
It denotes function arguments that are either vectors of vectors or vectors of matrices. A separate
|
||
|
synonym is needed to generate Python/Java etc. wrappers properly. At the function implementation
|
||
|
level their use is similar, but _InputArray::getMat(idx) should be used to get header for the
|
||
|
idx-th component of the outer vector and _InputArray::size().area() should be used to find the
|
||
|
number of components (vectors/matrices) of the outer vector.
|
||
|
|
||
|
In general, type support is limited to cv::Mat types. Other types are forbidden.
|
||
|
But in some cases we need to support passing of custom non-general Mat types, like arrays of cv::KeyPoint, cv::DMatch, etc.
|
||
|
This data is not intended to be interpreted as an image data, or processed somehow like regular cv::Mat.
|
||
|
To pass such custom type use rawIn() / rawOut() / rawInOut() wrappers.
|
||
|
Custom type is wrapped as Mat-compatible `CV_8UC<N>` values (N = sizeof(T), N <= CV_CN_MAX).
|
||
|
*/
|
||
|
class CV_EXPORTS _InputArray
|
||
|
{
|
||
|
public:
|
||
|
enum KindFlag {
|
||
|
KIND_SHIFT = 16,
|
||
|
FIXED_TYPE = 0x8000 << KIND_SHIFT,
|
||
|
FIXED_SIZE = 0x4000 << KIND_SHIFT,
|
||
|
KIND_MASK = 31 << KIND_SHIFT,
|
||
|
|
||
|
NONE = 0 << KIND_SHIFT,
|
||
|
MAT = 1 << KIND_SHIFT,
|
||
|
MATX = 2 << KIND_SHIFT,
|
||
|
STD_VECTOR = 3 << KIND_SHIFT,
|
||
|
STD_VECTOR_VECTOR = 4 << KIND_SHIFT,
|
||
|
STD_VECTOR_MAT = 5 << KIND_SHIFT,
|
||
|
#if OPENCV_ABI_COMPATIBILITY < 500
|
||
|
EXPR = 6 << KIND_SHIFT, //!< removed: https://github.com/opencv/opencv/pull/17046
|
||
|
#endif
|
||
|
OPENGL_BUFFER = 7 << KIND_SHIFT,
|
||
|
CUDA_HOST_MEM = 8 << KIND_SHIFT,
|
||
|
CUDA_GPU_MAT = 9 << KIND_SHIFT,
|
||
|
UMAT =10 << KIND_SHIFT,
|
||
|
STD_VECTOR_UMAT =11 << KIND_SHIFT,
|
||
|
STD_BOOL_VECTOR =12 << KIND_SHIFT,
|
||
|
STD_VECTOR_CUDA_GPU_MAT = 13 << KIND_SHIFT,
|
||
|
#if OPENCV_ABI_COMPATIBILITY < 500
|
||
|
STD_ARRAY =14 << KIND_SHIFT, //!< removed: https://github.com/opencv/opencv/issues/18897
|
||
|
#endif
|
||
|
STD_ARRAY_MAT =15 << KIND_SHIFT
|
||
|
};
|
||
|
|
||
|
_InputArray();
|
||
|
_InputArray(int _flags, void* _obj);
|
||
|
_InputArray(const Mat& m);
|
||
|
_InputArray(const MatExpr& expr);
|
||
|
_InputArray(const std::vector<Mat>& vec);
|
||
|
template<typename _Tp> _InputArray(const Mat_<_Tp>& m);
|
||
|
template<typename _Tp> _InputArray(const std::vector<_Tp>& vec);
|
||
|
_InputArray(const std::vector<bool>& vec);
|
||
|
template<typename _Tp> _InputArray(const std::vector<std::vector<_Tp> >& vec);
|
||
|
_InputArray(const std::vector<std::vector<bool> >&) = delete; // not supported
|
||
|
template<typename _Tp> _InputArray(const std::vector<Mat_<_Tp> >& vec);
|
||
|
template<typename _Tp> _InputArray(const _Tp* vec, int n);
|
||
|
template<typename _Tp, int m, int n> _InputArray(const Matx<_Tp, m, n>& matx);
|
||
|
_InputArray(const double& val);
|
||
|
_InputArray(const cuda::GpuMat& d_mat);
|
||
|
_InputArray(const std::vector<cuda::GpuMat>& d_mat_array);
|
||
|
_InputArray(const ogl::Buffer& buf);
|
||
|
_InputArray(const cuda::HostMem& cuda_mem);
|
||
|
template<typename _Tp> _InputArray(const cudev::GpuMat_<_Tp>& m);
|
||
|
_InputArray(const UMat& um);
|
||
|
_InputArray(const std::vector<UMat>& umv);
|
||
|
|
||
|
template<typename _Tp, std::size_t _Nm> _InputArray(const std::array<_Tp, _Nm>& arr);
|
||
|
template<std::size_t _Nm> _InputArray(const std::array<Mat, _Nm>& arr);
|
||
|
|
||
|
template<typename _Tp> static _InputArray rawIn(const std::vector<_Tp>& vec);
|
||
|
template<typename _Tp, std::size_t _Nm> static _InputArray rawIn(const std::array<_Tp, _Nm>& arr);
|
||
|
|
||
|
Mat getMat(int idx=-1) const;
|
||
|
Mat getMat_(int idx=-1) const;
|
||
|
UMat getUMat(int idx=-1) const;
|
||
|
void getMatVector(std::vector<Mat>& mv) const;
|
||
|
void getUMatVector(std::vector<UMat>& umv) const;
|
||
|
void getGpuMatVector(std::vector<cuda::GpuMat>& gpumv) const;
|
||
|
cuda::GpuMat getGpuMat() const;
|
||
|
ogl::Buffer getOGlBuffer() const;
|
||
|
|
||
|
int getFlags() const;
|
||
|
void* getObj() const;
|
||
|
Size getSz() const;
|
||
|
|
||
|
_InputArray::KindFlag kind() const;
|
||
|
int dims(int i=-1) const;
|
||
|
int cols(int i=-1) const;
|
||
|
int rows(int i=-1) const;
|
||
|
Size size(int i=-1) const;
|
||
|
int sizend(int* sz, int i=-1) const;
|
||
|
bool sameSize(const _InputArray& arr) const;
|
||
|
size_t total(int i=-1) const;
|
||
|
int type(int i=-1) const;
|
||
|
int depth(int i=-1) const;
|
||
|
int channels(int i=-1) const;
|
||
|
bool isContinuous(int i=-1) const;
|
||
|
bool isSubmatrix(int i=-1) const;
|
||
|
bool empty() const;
|
||
|
void copyTo(const _OutputArray& arr) const;
|
||
|
void copyTo(const _OutputArray& arr, const _InputArray & mask) const;
|
||
|
size_t offset(int i=-1) const;
|
||
|
size_t step(int i=-1) const;
|
||
|
bool isMat() const;
|
||
|
bool isUMat() const;
|
||
|
bool isMatVector() const;
|
||
|
bool isUMatVector() const;
|
||
|
bool isMatx() const;
|
||
|
bool isVector() const;
|
||
|
bool isGpuMat() const;
|
||
|
bool isGpuMatVector() const;
|
||
|
~_InputArray();
|
||
|
|
||
|
protected:
|
||
|
int flags;
|
||
|
void* obj;
|
||
|
Size sz;
|
||
|
|
||
|
void init(int _flags, const void* _obj);
|
||
|
void init(int _flags, const void* _obj, Size _sz);
|
||
|
};
|
||
|
CV_ENUM_FLAGS(_InputArray::KindFlag)
|
||
|
__CV_ENUM_FLAGS_BITWISE_AND(_InputArray::KindFlag, int, _InputArray::KindFlag)
|
||
|
|
||
|
/** @brief This type is very similar to InputArray except that it is used for input/output and output function
|
||
|
parameters.
|
||
|
|
||
|
Just like with InputArray, OpenCV users should not care about OutputArray, they just pass `Mat`,
|
||
|
`vector<T>` etc. to the functions. The same limitation as for `InputArray`: *Do not explicitly
|
||
|
create OutputArray instances* applies here too.
|
||
|
|
||
|
If you want to make your function polymorphic (i.e. accept different arrays as output parameters),
|
||
|
it is also not very difficult. Take the sample above as the reference. Note that
|
||
|
_OutputArray::create() needs to be called before _OutputArray::getMat(). This way you guarantee
|
||
|
that the output array is properly allocated.
|
||
|
|
||
|
Optional output parameters. If you do not need certain output array to be computed and returned to
|
||
|
you, pass cv::noArray(), just like you would in the case of optional input array. At the
|
||
|
implementation level, use _OutputArray::needed() to check if certain output array needs to be
|
||
|
computed or not.
|
||
|
|
||
|
There are several synonyms for OutputArray that are used to assist automatic Python/Java/... wrapper
|
||
|
generators:
|
||
|
@code
|
||
|
typedef OutputArray OutputArrayOfArrays;
|
||
|
typedef OutputArray InputOutputArray;
|
||
|
typedef OutputArray InputOutputArrayOfArrays;
|
||
|
@endcode
|
||
|
*/
|
||
|
class CV_EXPORTS _OutputArray : public _InputArray
|
||
|
{
|
||
|
public:
|
||
|
enum DepthMask
|
||
|
{
|
||
|
DEPTH_MASK_8U = 1 << CV_8U,
|
||
|
DEPTH_MASK_8S = 1 << CV_8S,
|
||
|
DEPTH_MASK_16U = 1 << CV_16U,
|
||
|
DEPTH_MASK_16S = 1 << CV_16S,
|
||
|
DEPTH_MASK_32S = 1 << CV_32S,
|
||
|
DEPTH_MASK_32F = 1 << CV_32F,
|
||
|
DEPTH_MASK_64F = 1 << CV_64F,
|
||
|
DEPTH_MASK_16F = 1 << CV_16F,
|
||
|
DEPTH_MASK_ALL = (DEPTH_MASK_64F<<1)-1,
|
||
|
DEPTH_MASK_ALL_BUT_8S = DEPTH_MASK_ALL & ~DEPTH_MASK_8S,
|
||
|
DEPTH_MASK_ALL_16F = (DEPTH_MASK_16F<<1)-1,
|
||
|
DEPTH_MASK_FLT = DEPTH_MASK_32F + DEPTH_MASK_64F
|
||
|
};
|
||
|
|
||
|
_OutputArray();
|
||
|
_OutputArray(int _flags, void* _obj);
|
||
|
_OutputArray(Mat& m);
|
||
|
_OutputArray(std::vector<Mat>& vec);
|
||
|
_OutputArray(cuda::GpuMat& d_mat);
|
||
|
_OutputArray(std::vector<cuda::GpuMat>& d_mat);
|
||
|
_OutputArray(ogl::Buffer& buf);
|
||
|
_OutputArray(cuda::HostMem& cuda_mem);
|
||
|
template<typename _Tp> _OutputArray(cudev::GpuMat_<_Tp>& m);
|
||
|
template<typename _Tp> _OutputArray(std::vector<_Tp>& vec);
|
||
|
_OutputArray(std::vector<bool>& vec) = delete; // not supported
|
||
|
template<typename _Tp> _OutputArray(std::vector<std::vector<_Tp> >& vec);
|
||
|
_OutputArray(std::vector<std::vector<bool> >&) = delete; // not supported
|
||
|
template<typename _Tp> _OutputArray(std::vector<Mat_<_Tp> >& vec);
|
||
|
template<typename _Tp> _OutputArray(Mat_<_Tp>& m);
|
||
|
template<typename _Tp> _OutputArray(_Tp* vec, int n);
|
||
|
template<typename _Tp, int m, int n> _OutputArray(Matx<_Tp, m, n>& matx);
|
||
|
_OutputArray(UMat& m);
|
||
|
_OutputArray(std::vector<UMat>& vec);
|
||
|
|
||
|
_OutputArray(const Mat& m);
|
||
|
_OutputArray(const std::vector<Mat>& vec);
|
||
|
_OutputArray(const cuda::GpuMat& d_mat);
|
||
|
_OutputArray(const std::vector<cuda::GpuMat>& d_mat);
|
||
|
_OutputArray(const ogl::Buffer& buf);
|
||
|
_OutputArray(const cuda::HostMem& cuda_mem);
|
||
|
template<typename _Tp> _OutputArray(const cudev::GpuMat_<_Tp>& m);
|
||
|
template<typename _Tp> _OutputArray(const std::vector<_Tp>& vec);
|
||
|
template<typename _Tp> _OutputArray(const std::vector<std::vector<_Tp> >& vec);
|
||
|
template<typename _Tp> _OutputArray(const std::vector<Mat_<_Tp> >& vec);
|
||
|
template<typename _Tp> _OutputArray(const Mat_<_Tp>& m);
|
||
|
template<typename _Tp> _OutputArray(const _Tp* vec, int n);
|
||
|
template<typename _Tp, int m, int n> _OutputArray(const Matx<_Tp, m, n>& matx);
|
||
|
_OutputArray(const UMat& m);
|
||
|
_OutputArray(const std::vector<UMat>& vec);
|
||
|
|
||
|
template<typename _Tp, std::size_t _Nm> _OutputArray(std::array<_Tp, _Nm>& arr);
|
||
|
template<typename _Tp, std::size_t _Nm> _OutputArray(const std::array<_Tp, _Nm>& arr);
|
||
|
template<std::size_t _Nm> _OutputArray(std::array<Mat, _Nm>& arr);
|
||
|
template<std::size_t _Nm> _OutputArray(const std::array<Mat, _Nm>& arr);
|
||
|
|
||
|
template<typename _Tp> static _OutputArray rawOut(std::vector<_Tp>& vec);
|
||
|
template<typename _Tp, std::size_t _Nm> static _OutputArray rawOut(std::array<_Tp, _Nm>& arr);
|
||
|
|
||
|
bool fixedSize() const;
|
||
|
bool fixedType() const;
|
||
|
bool needed() const;
|
||
|
Mat& getMatRef(int i=-1) const;
|
||
|
UMat& getUMatRef(int i=-1) const;
|
||
|
cuda::GpuMat& getGpuMatRef() const;
|
||
|
std::vector<cuda::GpuMat>& getGpuMatVecRef() const;
|
||
|
ogl::Buffer& getOGlBufferRef() const;
|
||
|
cuda::HostMem& getHostMemRef() const;
|
||
|
void create(Size sz, int type, int i=-1, bool allowTransposed=false, _OutputArray::DepthMask fixedDepthMask=static_cast<_OutputArray::DepthMask>(0)) const;
|
||
|
void create(int rows, int cols, int type, int i=-1, bool allowTransposed=false, _OutputArray::DepthMask fixedDepthMask=static_cast<_OutputArray::DepthMask>(0)) const;
|
||
|
void create(int dims, const int* size, int type, int i=-1, bool allowTransposed=false, _OutputArray::DepthMask fixedDepthMask=static_cast<_OutputArray::DepthMask>(0)) const;
|
||
|
void createSameSize(const _InputArray& arr, int mtype) const;
|
||
|
void release() const;
|
||
|
void clear() const;
|
||
|
void setTo(const _InputArray& value, const _InputArray & mask = _InputArray()) const;
|
||
|
|
||
|
void assign(const UMat& u) const;
|
||
|
void assign(const Mat& m) const;
|
||
|
|
||
|
void assign(const std::vector<UMat>& v) const;
|
||
|
void assign(const std::vector<Mat>& v) const;
|
||
|
|
||
|
void move(UMat& u) const;
|
||
|
void move(Mat& m) const;
|
||
|
};
|
||
|
|
||
|
|
||
|
class CV_EXPORTS _InputOutputArray : public _OutputArray
|
||
|
{
|
||
|
public:
|
||
|
_InputOutputArray();
|
||
|
_InputOutputArray(int _flags, void* _obj);
|
||
|
_InputOutputArray(Mat& m);
|
||
|
_InputOutputArray(std::vector<Mat>& vec);
|
||
|
_InputOutputArray(cuda::GpuMat& d_mat);
|
||
|
_InputOutputArray(ogl::Buffer& buf);
|
||
|
_InputOutputArray(cuda::HostMem& cuda_mem);
|
||
|
template<typename _Tp> _InputOutputArray(cudev::GpuMat_<_Tp>& m);
|
||
|
template<typename _Tp> _InputOutputArray(std::vector<_Tp>& vec);
|
||
|
_InputOutputArray(std::vector<bool>& vec) = delete; // not supported
|
||
|
template<typename _Tp> _InputOutputArray(std::vector<std::vector<_Tp> >& vec);
|
||
|
template<typename _Tp> _InputOutputArray(std::vector<Mat_<_Tp> >& vec);
|
||
|
template<typename _Tp> _InputOutputArray(Mat_<_Tp>& m);
|
||
|
template<typename _Tp> _InputOutputArray(_Tp* vec, int n);
|
||
|
template<typename _Tp, int m, int n> _InputOutputArray(Matx<_Tp, m, n>& matx);
|
||
|
_InputOutputArray(UMat& m);
|
||
|
_InputOutputArray(std::vector<UMat>& vec);
|
||
|
|
||
|
_InputOutputArray(const Mat& m);
|
||
|
_InputOutputArray(const std::vector<Mat>& vec);
|
||
|
_InputOutputArray(const cuda::GpuMat& d_mat);
|
||
|
_InputOutputArray(const std::vector<cuda::GpuMat>& d_mat);
|
||
|
_InputOutputArray(const ogl::Buffer& buf);
|
||
|
_InputOutputArray(const cuda::HostMem& cuda_mem);
|
||
|
template<typename _Tp> _InputOutputArray(const cudev::GpuMat_<_Tp>& m);
|
||
|
template<typename _Tp> _InputOutputArray(const std::vector<_Tp>& vec);
|
||
|
template<typename _Tp> _InputOutputArray(const std::vector<std::vector<_Tp> >& vec);
|
||
|
template<typename _Tp> _InputOutputArray(const std::vector<Mat_<_Tp> >& vec);
|
||
|
template<typename _Tp> _InputOutputArray(const Mat_<_Tp>& m);
|
||
|
template<typename _Tp> _InputOutputArray(const _Tp* vec, int n);
|
||
|
template<typename _Tp, int m, int n> _InputOutputArray(const Matx<_Tp, m, n>& matx);
|
||
|
_InputOutputArray(const UMat& m);
|
||
|
_InputOutputArray(const std::vector<UMat>& vec);
|
||
|
|
||
|
template<typename _Tp, std::size_t _Nm> _InputOutputArray(std::array<_Tp, _Nm>& arr);
|
||
|
template<typename _Tp, std::size_t _Nm> _InputOutputArray(const std::array<_Tp, _Nm>& arr);
|
||
|
template<std::size_t _Nm> _InputOutputArray(std::array<Mat, _Nm>& arr);
|
||
|
template<std::size_t _Nm> _InputOutputArray(const std::array<Mat, _Nm>& arr);
|
||
|
|
||
|
template<typename _Tp> static _InputOutputArray rawInOut(std::vector<_Tp>& vec);
|
||
|
template<typename _Tp, std::size_t _Nm> _InputOutputArray rawInOut(std::array<_Tp, _Nm>& arr);
|
||
|
|
||
|
};
|
||
|
|
||
|
/** Helper to wrap custom types. @see InputArray */
|
||
|
template<typename _Tp> static inline _InputArray rawIn(_Tp& v);
|
||
|
/** Helper to wrap custom types. @see InputArray */
|
||
|
template<typename _Tp> static inline _OutputArray rawOut(_Tp& v);
|
||
|
/** Helper to wrap custom types. @see InputArray */
|
||
|
template<typename _Tp> static inline _InputOutputArray rawInOut(_Tp& v);
|
||
|
|
||
|
CV__DEBUG_NS_END
|
||
|
|
||
|
typedef const _InputArray& InputArray;
|
||
|
typedef InputArray InputArrayOfArrays;
|
||
|
typedef const _OutputArray& OutputArray;
|
||
|
typedef OutputArray OutputArrayOfArrays;
|
||
|
typedef const _InputOutputArray& InputOutputArray;
|
||
|
typedef InputOutputArray InputOutputArrayOfArrays;
|
||
|
|
||
|
CV_EXPORTS InputOutputArray noArray();
|
||
|
|
||
|
/////////////////////////////////// MatAllocator //////////////////////////////////////
|
||
|
|
||
|
/** @brief Usage flags for allocator
|
||
|
|
||
|
@warning All flags except `USAGE_DEFAULT` are experimental.
|
||
|
|
||
|
@warning For the OpenCL allocator, `USAGE_ALLOCATE_SHARED_MEMORY` depends on
|
||
|
OpenCV's optional, experimental integration with OpenCL SVM. To enable this
|
||
|
integration, build OpenCV using the `WITH_OPENCL_SVM=ON` CMake option and, at
|
||
|
runtime, call `cv::ocl::Context::getDefault().setUseSVM(true);` or similar
|
||
|
code. Note that SVM is incompatible with OpenCL 1.x.
|
||
|
*/
|
||
|
enum UMatUsageFlags
|
||
|
{
|
||
|
USAGE_DEFAULT = 0,
|
||
|
|
||
|
// buffer allocation policy is platform and usage specific
|
||
|
USAGE_ALLOCATE_HOST_MEMORY = 1 << 0,
|
||
|
USAGE_ALLOCATE_DEVICE_MEMORY = 1 << 1,
|
||
|
USAGE_ALLOCATE_SHARED_MEMORY = 1 << 2, // It is not equal to: USAGE_ALLOCATE_HOST_MEMORY | USAGE_ALLOCATE_DEVICE_MEMORY
|
||
|
|
||
|
__UMAT_USAGE_FLAGS_32BIT = 0x7fffffff // Binary compatibility hint
|
||
|
};
|
||
|
|
||
|
struct CV_EXPORTS UMatData;
|
||
|
|
||
|
/** @brief Custom array allocator
|
||
|
*/
|
||
|
class CV_EXPORTS MatAllocator
|
||
|
{
|
||
|
public:
|
||
|
MatAllocator() {}
|
||
|
virtual ~MatAllocator() {}
|
||
|
|
||
|
// let's comment it off for now to detect and fix all the uses of allocator
|
||
|
//virtual void allocate(int dims, const int* sizes, int type, int*& refcount,
|
||
|
// uchar*& datastart, uchar*& data, size_t* step) = 0;
|
||
|
//virtual void deallocate(int* refcount, uchar* datastart, uchar* data) = 0;
|
||
|
virtual UMatData* allocate(int dims, const int* sizes, int type,
|
||
|
void* data, size_t* step, AccessFlag flags, UMatUsageFlags usageFlags) const = 0;
|
||
|
virtual bool allocate(UMatData* data, AccessFlag accessflags, UMatUsageFlags usageFlags) const = 0;
|
||
|
virtual void deallocate(UMatData* data) const = 0;
|
||
|
virtual void map(UMatData* data, AccessFlag accessflags) const;
|
||
|
virtual void unmap(UMatData* data) const;
|
||
|
virtual void download(UMatData* data, void* dst, int dims, const size_t sz[],
|
||
|
const size_t srcofs[], const size_t srcstep[],
|
||
|
const size_t dststep[]) const;
|
||
|
virtual void upload(UMatData* data, const void* src, int dims, const size_t sz[],
|
||
|
const size_t dstofs[], const size_t dststep[],
|
||
|
const size_t srcstep[]) const;
|
||
|
virtual void copy(UMatData* srcdata, UMatData* dstdata, int dims, const size_t sz[],
|
||
|
const size_t srcofs[], const size_t srcstep[],
|
||
|
const size_t dstofs[], const size_t dststep[], bool sync) const;
|
||
|
|
||
|
// default implementation returns DummyBufferPoolController
|
||
|
virtual BufferPoolController* getBufferPoolController(const char* id = NULL) const;
|
||
|
};
|
||
|
|
||
|
|
||
|
//////////////////////////////// MatCommaInitializer //////////////////////////////////
|
||
|
|
||
|
/** @brief Comma-separated Matrix Initializer
|
||
|
|
||
|
The class instances are usually not created explicitly.
|
||
|
Instead, they are created on "matrix << firstValue" operator.
|
||
|
|
||
|
The sample below initializes 2x2 rotation matrix:
|
||
|
|
||
|
\code
|
||
|
double angle = 30, a = cos(angle*CV_PI/180), b = sin(angle*CV_PI/180);
|
||
|
Mat R = (Mat_<double>(2,2) << a, -b, b, a);
|
||
|
\endcode
|
||
|
*/
|
||
|
template<typename _Tp> class MatCommaInitializer_
|
||
|
{
|
||
|
public:
|
||
|
//! the constructor, created by "matrix << firstValue" operator, where matrix is cv::Mat
|
||
|
MatCommaInitializer_(Mat_<_Tp>* _m);
|
||
|
//! the operator that takes the next value and put it to the matrix
|
||
|
template<typename T2> MatCommaInitializer_<_Tp>& operator , (T2 v);
|
||
|
//! another form of conversion operator
|
||
|
operator Mat_<_Tp>() const;
|
||
|
protected:
|
||
|
MatIterator_<_Tp> it;
|
||
|
};
|
||
|
|
||
|
|
||
|
/////////////////////////////////////// Mat ///////////////////////////////////////////
|
||
|
|
||
|
// note that umatdata might be allocated together
|
||
|
// with the matrix data, not as a separate object.
|
||
|
// therefore, it does not have constructor or destructor;
|
||
|
// it should be explicitly initialized using init().
|
||
|
struct CV_EXPORTS UMatData
|
||
|
{
|
||
|
enum MemoryFlag { COPY_ON_MAP=1, HOST_COPY_OBSOLETE=2,
|
||
|
DEVICE_COPY_OBSOLETE=4, TEMP_UMAT=8, TEMP_COPIED_UMAT=24,
|
||
|
USER_ALLOCATED=32, DEVICE_MEM_MAPPED=64,
|
||
|
ASYNC_CLEANUP=128
|
||
|
};
|
||
|
UMatData(const MatAllocator* allocator);
|
||
|
~UMatData();
|
||
|
|
||
|
// provide atomic access to the structure
|
||
|
void lock();
|
||
|
void unlock();
|
||
|
|
||
|
bool hostCopyObsolete() const;
|
||
|
bool deviceCopyObsolete() const;
|
||
|
bool deviceMemMapped() const;
|
||
|
bool copyOnMap() const;
|
||
|
bool tempUMat() const;
|
||
|
bool tempCopiedUMat() const;
|
||
|
void markHostCopyObsolete(bool flag);
|
||
|
void markDeviceCopyObsolete(bool flag);
|
||
|
void markDeviceMemMapped(bool flag);
|
||
|
|
||
|
const MatAllocator* prevAllocator;
|
||
|
const MatAllocator* currAllocator;
|
||
|
int urefcount;
|
||
|
int refcount;
|
||
|
uchar* data;
|
||
|
uchar* origdata;
|
||
|
size_t size;
|
||
|
|
||
|
UMatData::MemoryFlag flags;
|
||
|
void* handle;
|
||
|
void* userdata;
|
||
|
int allocatorFlags_;
|
||
|
int mapcount;
|
||
|
UMatData* originalUMatData;
|
||
|
std::shared_ptr<void> allocatorContext;
|
||
|
};
|
||
|
CV_ENUM_FLAGS(UMatData::MemoryFlag)
|
||
|
|
||
|
|
||
|
struct CV_EXPORTS MatSize
|
||
|
{
|
||
|
explicit MatSize(int* _p) CV_NOEXCEPT;
|
||
|
int dims() const CV_NOEXCEPT;
|
||
|
Size operator()() const;
|
||
|
const int& operator[](int i) const;
|
||
|
int& operator[](int i);
|
||
|
operator const int*() const CV_NOEXCEPT; // TODO OpenCV 4.0: drop this
|
||
|
bool operator == (const MatSize& sz) const CV_NOEXCEPT;
|
||
|
bool operator != (const MatSize& sz) const CV_NOEXCEPT;
|
||
|
|
||
|
int* p;
|
||
|
};
|
||
|
|
||
|
struct CV_EXPORTS MatStep
|
||
|
{
|
||
|
MatStep() CV_NOEXCEPT;
|
||
|
explicit MatStep(size_t s) CV_NOEXCEPT;
|
||
|
const size_t& operator[](int i) const CV_NOEXCEPT;
|
||
|
size_t& operator[](int i) CV_NOEXCEPT;
|
||
|
operator size_t() const;
|
||
|
MatStep& operator = (size_t s);
|
||
|
|
||
|
size_t* p;
|
||
|
size_t buf[2];
|
||
|
protected:
|
||
|
MatStep& operator = (const MatStep&);
|
||
|
};
|
||
|
|
||
|
/** @example samples/cpp/cout_mat.cpp
|
||
|
An example demonstrating the serial out capabilities of cv::Mat
|
||
|
*/
|
||
|
|
||
|
/** @brief n-dimensional dense array class \anchor CVMat_Details
|
||
|
|
||
|
The class Mat represents an n-dimensional dense numerical single-channel or multi-channel array. It
|
||
|
can be used to store real or complex-valued vectors and matrices, grayscale or color images, voxel
|
||
|
volumes, vector fields, point clouds, tensors, histograms (though, very high-dimensional histograms
|
||
|
may be better stored in a SparseMat ). The data layout of the array `M` is defined by the array
|
||
|
`M.step[]`, so that the address of element \f$(i_0,...,i_{M.dims-1})\f$, where \f$0\leq i_k<M.size[k]\f$, is
|
||
|
computed as:
|
||
|
\f[addr(M_{i_0,...,i_{M.dims-1}}) = M.data + M.step[0]*i_0 + M.step[1]*i_1 + ... + M.step[M.dims-1]*i_{M.dims-1}\f]
|
||
|
In case of a 2-dimensional array, the above formula is reduced to:
|
||
|
\f[addr(M_{i,j}) = M.data + M.step[0]*i + M.step[1]*j\f]
|
||
|
Note that `M.step[i] >= M.step[i+1]` (in fact, `M.step[i] >= M.step[i+1]*M.size[i+1]` ). This means
|
||
|
that 2-dimensional matrices are stored row-by-row, 3-dimensional matrices are stored plane-by-plane,
|
||
|
and so on. M.step[M.dims-1] is minimal and always equal to the element size M.elemSize() .
|
||
|
|
||
|
So, the data layout in Mat is compatible with the majority of dense array types from the standard
|
||
|
toolkits and SDKs, such as Numpy (ndarray), Win32 (independent device bitmaps), and others,
|
||
|
that is, with any array that uses *steps* (or *strides*) to compute the position of a pixel.
|
||
|
Due to this compatibility, it is possible to make a Mat header for user-allocated data and process
|
||
|
it in-place using OpenCV functions.
|
||
|
|
||
|
There are many different ways to create a Mat object. The most popular options are listed below:
|
||
|
|
||
|
- Use the create(nrows, ncols, type) method or the similar Mat(nrows, ncols, type[, fillValue])
|
||
|
constructor. A new array of the specified size and type is allocated. type has the same meaning as
|
||
|
in the cvCreateMat method. For example, CV_8UC1 means a 8-bit single-channel array, CV_32FC2
|
||
|
means a 2-channel (complex) floating-point array, and so on.
|
||
|
@code
|
||
|
// make a 7x7 complex matrix filled with 1+3j.
|
||
|
Mat M(7,7,CV_32FC2,Scalar(1,3));
|
||
|
// and now turn M to a 100x60 15-channel 8-bit matrix.
|
||
|
// The old content will be deallocated
|
||
|
M.create(100,60,CV_8UC(15));
|
||
|
@endcode
|
||
|
As noted in the introduction to this chapter, create() allocates only a new array when the shape
|
||
|
or type of the current array are different from the specified ones.
|
||
|
|
||
|
- Create a multi-dimensional array:
|
||
|
@code
|
||
|
// create a 100x100x100 8-bit array
|
||
|
int sz[] = {100, 100, 100};
|
||
|
Mat bigCube(3, sz, CV_8U, Scalar::all(0));
|
||
|
@endcode
|
||
|
It passes the number of dimensions =1 to the Mat constructor but the created array will be
|
||
|
2-dimensional with the number of columns set to 1. So, Mat::dims is always \>= 2 (can also be 0
|
||
|
when the array is empty).
|
||
|
|
||
|
- Use a copy constructor or assignment operator where there can be an array or expression on the
|
||
|
right side (see below). As noted in the introduction, the array assignment is an O(1) operation
|
||
|
because it only copies the header and increases the reference counter. The Mat::clone() method can
|
||
|
be used to get a full (deep) copy of the array when you need it.
|
||
|
|
||
|
- Construct a header for a part of another array. It can be a single row, single column, several
|
||
|
rows, several columns, rectangular region in the array (called a *minor* in algebra) or a
|
||
|
diagonal. Such operations are also O(1) because the new header references the same data. You can
|
||
|
actually modify a part of the array using this feature, for example:
|
||
|
@code
|
||
|
// add the 5-th row, multiplied by 3 to the 3rd row
|
||
|
M.row(3) = M.row(3) + M.row(5)*3;
|
||
|
// now copy the 7-th column to the 1-st column
|
||
|
// M.col(1) = M.col(7); // this will not work
|
||
|
Mat M1 = M.col(1);
|
||
|
M.col(7).copyTo(M1);
|
||
|
// create a new 320x240 image
|
||
|
Mat img(Size(320,240),CV_8UC3);
|
||
|
// select a ROI
|
||
|
Mat roi(img, Rect(10,10,100,100));
|
||
|
// fill the ROI with (0,255,0) (which is green in RGB space);
|
||
|
// the original 320x240 image will be modified
|
||
|
roi = Scalar(0,255,0);
|
||
|
@endcode
|
||
|
Due to the additional datastart and dataend members, it is possible to compute a relative
|
||
|
sub-array position in the main *container* array using locateROI():
|
||
|
@code
|
||
|
Mat A = Mat::eye(10, 10, CV_32S);
|
||
|
// extracts A columns, 1 (inclusive) to 3 (exclusive).
|
||
|
Mat B = A(Range::all(), Range(1, 3));
|
||
|
// extracts B rows, 5 (inclusive) to 9 (exclusive).
|
||
|
// that is, C \~ A(Range(5, 9), Range(1, 3))
|
||
|
Mat C = B(Range(5, 9), Range::all());
|
||
|
Size size; Point ofs;
|
||
|
C.locateROI(size, ofs);
|
||
|
// size will be (width=10,height=10) and the ofs will be (x=1, y=5)
|
||
|
@endcode
|
||
|
As in case of whole matrices, if you need a deep copy, use the `clone()` method of the extracted
|
||
|
sub-matrices.
|
||
|
|
||
|
- Make a header for user-allocated data. It can be useful to do the following:
|
||
|
-# Process "foreign" data using OpenCV (for example, when you implement a DirectShow\* filter or
|
||
|
a processing module for gstreamer, and so on). For example:
|
||
|
@code
|
||
|
Mat process_video_frame(const unsigned char* pixels,
|
||
|
int width, int height, int step)
|
||
|
{
|
||
|
// wrap input buffer
|
||
|
Mat img(height, width, CV_8UC3, (unsigned char*)pixels, step);
|
||
|
|
||
|
Mat result;
|
||
|
GaussianBlur(img, result, Size(7, 7), 1.5, 1.5);
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
@endcode
|
||
|
-# Quickly initialize small matrices and/or get a super-fast element access.
|
||
|
@code
|
||
|
double m[3][3] = {{a, b, c}, {d, e, f}, {g, h, i}};
|
||
|
Mat M = Mat(3, 3, CV_64F, m).inv();
|
||
|
@endcode
|
||
|
.
|
||
|
|
||
|
- Use MATLAB-style array initializers, zeros(), ones(), eye(), for example:
|
||
|
@code
|
||
|
// create a double-precision identity matrix and add it to M.
|
||
|
M += Mat::eye(M.rows, M.cols, CV_64F);
|
||
|
@endcode
|
||
|
|
||
|
- Use a comma-separated initializer:
|
||
|
@code
|
||
|
// create a 3x3 double-precision identity matrix
|
||
|
Mat M = (Mat_<double>(3,3) << 1, 0, 0, 0, 1, 0, 0, 0, 1);
|
||
|
@endcode
|
||
|
With this approach, you first call a constructor of the Mat class with the proper parameters, and
|
||
|
then you just put `<< operator` followed by comma-separated values that can be constants,
|
||
|
variables, expressions, and so on. Also, note the extra parentheses required to avoid compilation
|
||
|
errors.
|
||
|
|
||
|
Once the array is created, it is automatically managed via a reference-counting mechanism. If the
|
||
|
array header is built on top of user-allocated data, you should handle the data by yourself. The
|
||
|
array data is deallocated when no one points to it. If you want to release the data pointed by a
|
||
|
array header before the array destructor is called, use Mat::release().
|
||
|
|
||
|
The next important thing to learn about the array class is element access. This manual already
|
||
|
described how to compute an address of each array element. Normally, you are not required to use the
|
||
|
formula directly in the code. If you know the array element type (which can be retrieved using the
|
||
|
method Mat::type() ), you can access the element \f$M_{ij}\f$ of a 2-dimensional array as:
|
||
|
@code
|
||
|
M.at<double>(i,j) += 1.f;
|
||
|
@endcode
|
||
|
assuming that `M` is a double-precision floating-point array. There are several variants of the method
|
||
|
at for a different number of dimensions.
|
||
|
|
||
|
If you need to process a whole row of a 2D array, the most efficient way is to get the pointer to
|
||
|
the row first, and then just use the plain C operator [] :
|
||
|
@code
|
||
|
// compute sum of positive matrix elements
|
||
|
// (assuming that M is a double-precision matrix)
|
||
|
double sum=0;
|
||
|
for(int i = 0; i < M.rows; i++)
|
||
|
{
|
||
|
const double* Mi = M.ptr<double>(i);
|
||
|
for(int j = 0; j < M.cols; j++)
|
||
|
sum += std::max(Mi[j], 0.);
|
||
|
}
|
||
|
@endcode
|
||
|
Some operations, like the one above, do not actually depend on the array shape. They just process
|
||
|
elements of an array one by one (or elements from multiple arrays that have the same coordinates,
|
||
|
for example, array addition). Such operations are called *element-wise*. It makes sense to check
|
||
|
whether all the input/output arrays are continuous, namely, have no gaps at the end of each row. If
|
||
|
yes, process them as a long single row:
|
||
|
@code
|
||
|
// compute the sum of positive matrix elements, optimized variant
|
||
|
double sum=0;
|
||
|
int cols = M.cols, rows = M.rows;
|
||
|
if(M.isContinuous())
|
||
|
{
|
||
|
cols *= rows;
|
||
|
rows = 1;
|
||
|
}
|
||
|
for(int i = 0; i < rows; i++)
|
||
|
{
|
||
|
const double* Mi = M.ptr<double>(i);
|
||
|
for(int j = 0; j < cols; j++)
|
||
|
sum += std::max(Mi[j], 0.);
|
||
|
}
|
||
|
@endcode
|
||
|
In case of the continuous matrix, the outer loop body is executed just once. So, the overhead is
|
||
|
smaller, which is especially noticeable in case of small matrices.
|
||
|
|
||
|
Finally, there are STL-style iterators that are smart enough to skip gaps between successive rows:
|
||
|
@code
|
||
|
// compute sum of positive matrix elements, iterator-based variant
|
||
|
double sum=0;
|
||
|
MatConstIterator_<double> it = M.begin<double>(), it_end = M.end<double>();
|
||
|
for(; it != it_end; ++it)
|
||
|
sum += std::max(*it, 0.);
|
||
|
@endcode
|
||
|
The matrix iterators are random-access iterators, so they can be passed to any STL algorithm,
|
||
|
including std::sort().
|
||
|
|
||
|
@note Matrix Expressions and arithmetic see MatExpr
|
||
|
*/
|
||
|
class CV_EXPORTS Mat
|
||
|
{
|
||
|
public:
|
||
|
/**
|
||
|
These are various constructors that form a matrix. As noted in the AutomaticAllocation, often
|
||
|
the default constructor is enough, and the proper matrix will be allocated by an OpenCV function.
|
||
|
The constructed matrix can further be assigned to another matrix or matrix expression or can be
|
||
|
allocated with Mat::create . In the former case, the old content is de-referenced.
|
||
|
*/
|
||
|
Mat() CV_NOEXCEPT;
|
||
|
|
||
|
/** @overload
|
||
|
@param rows Number of rows in a 2D array.
|
||
|
@param cols Number of columns in a 2D array.
|
||
|
@param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
|
||
|
CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
|
||
|
*/
|
||
|
Mat(int rows, int cols, int type);
|
||
|
|
||
|
/** @overload
|
||
|
@param size 2D array size: Size(cols, rows) . In the Size() constructor, the number of rows and the
|
||
|
number of columns go in the reverse order.
|
||
|
@param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
|
||
|
CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
|
||
|
*/
|
||
|
Mat(Size size, int type);
|
||
|
|
||
|
/** @overload
|
||
|
@param rows Number of rows in a 2D array.
|
||
|
@param cols Number of columns in a 2D array.
|
||
|
@param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
|
||
|
CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
|
||
|
@param s An optional value to initialize each matrix element with. To set all the matrix elements to
|
||
|
the particular value after the construction, use the assignment operator
|
||
|
Mat::operator=(const Scalar& value) .
|
||
|
*/
|
||
|
Mat(int rows, int cols, int type, const Scalar& s);
|
||
|
|
||
|
/** @overload
|
||
|
@param size 2D array size: Size(cols, rows) . In the Size() constructor, the number of rows and the
|
||
|
number of columns go in the reverse order.
|
||
|
@param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
|
||
|
CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
|
||
|
@param s An optional value to initialize each matrix element with. To set all the matrix elements to
|
||
|
the particular value after the construction, use the assignment operator
|
||
|
Mat::operator=(const Scalar& value) .
|
||
|
*/
|
||
|
Mat(Size size, int type, const Scalar& s);
|
||
|
|
||
|
/** @overload
|
||
|
@param ndims Array dimensionality.
|
||
|
@param sizes Array of integers specifying an n-dimensional array shape.
|
||
|
@param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
|
||
|
CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
|
||
|
*/
|
||
|
Mat(int ndims, const int* sizes, int type);
|
||
|
|
||
|
/** @overload
|
||
|
@param sizes Array of integers specifying an n-dimensional array shape.
|
||
|
@param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
|
||
|
CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
|
||
|
*/
|
||
|
Mat(const std::vector<int>& sizes, int type);
|
||
|
|
||
|
/** @overload
|
||
|
@param ndims Array dimensionality.
|
||
|
@param sizes Array of integers specifying an n-dimensional array shape.
|
||
|
@param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
|
||
|
CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
|
||
|
@param s An optional value to initialize each matrix element with. To set all the matrix elements to
|
||
|
the particular value after the construction, use the assignment operator
|
||
|
Mat::operator=(const Scalar& value) .
|
||
|
*/
|
||
|
Mat(int ndims, const int* sizes, int type, const Scalar& s);
|
||
|
|
||
|
/** @overload
|
||
|
@param sizes Array of integers specifying an n-dimensional array shape.
|
||
|
@param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
|
||
|
CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
|
||
|
@param s An optional value to initialize each matrix element with. To set all the matrix elements to
|
||
|
the particular value after the construction, use the assignment operator
|
||
|
Mat::operator=(const Scalar& value) .
|
||
|
*/
|
||
|
Mat(const std::vector<int>& sizes, int type, const Scalar& s);
|
||
|
|
||
|
|
||
|
/** @overload
|
||
|
@param m Array that (as a whole or partly) is assigned to the constructed matrix. No data is copied
|
||
|
by these constructors. Instead, the header pointing to m data or its sub-array is constructed and
|
||
|
associated with it. The reference counter, if any, is incremented. So, when you modify the matrix
|
||
|
formed using such a constructor, you also modify the corresponding elements of m . If you want to
|
||
|
have an independent copy of the sub-array, use Mat::clone() .
|
||
|
*/
|
||
|
Mat(const Mat& m);
|
||
|
|
||
|
/** @overload
|
||
|
@param rows Number of rows in a 2D array.
|
||
|
@param cols Number of columns in a 2D array.
|
||
|
@param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
|
||
|
CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
|
||
|
@param data Pointer to the user data. Matrix constructors that take data and step parameters do not
|
||
|
allocate matrix data. Instead, they just initialize the matrix header that points to the specified
|
||
|
data, which means that no data is copied. This operation is very efficient and can be used to
|
||
|
process external data using OpenCV functions. The external data is not automatically deallocated, so
|
||
|
you should take care of it.
|
||
|
@param step Number of bytes each matrix row occupies. The value should include the padding bytes at
|
||
|
the end of each row, if any. If the parameter is missing (set to AUTO_STEP ), no padding is assumed
|
||
|
and the actual step is calculated as cols*elemSize(). See Mat::elemSize.
|
||
|
*/
|
||
|
Mat(int rows, int cols, int type, void* data, size_t step=AUTO_STEP);
|
||
|
|
||
|
/** @overload
|
||
|
@param size 2D array size: Size(cols, rows) . In the Size() constructor, the number of rows and the
|
||
|
number of columns go in the reverse order.
|
||
|
@param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
|
||
|
CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
|
||
|
@param data Pointer to the user data. Matrix constructors that take data and step parameters do not
|
||
|
allocate matrix data. Instead, they just initialize the matrix header that points to the specified
|
||
|
data, which means that no data is copied. This operation is very efficient and can be used to
|
||
|
process external data using OpenCV functions. The external data is not automatically deallocated, so
|
||
|
you should take care of it.
|
||
|
@param step Number of bytes each matrix row occupies. The value should include the padding bytes at
|
||
|
the end of each row, if any. If the parameter is missing (set to AUTO_STEP ), no padding is assumed
|
||
|
and the actual step is calculated as cols*elemSize(). See Mat::elemSize.
|
||
|
*/
|
||
|
Mat(Size size, int type, void* data, size_t step=AUTO_STEP);
|
||
|
|
||
|
/** @overload
|
||
|
@param ndims Array dimensionality.
|
||
|
@param sizes Array of integers specifying an n-dimensional array shape.
|
||
|
@param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
|
||
|
CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
|
||
|
@param data Pointer to the user data. Matrix constructors that take data and step parameters do not
|
||
|
allocate matrix data. Instead, they just initialize the matrix header that points to the specified
|
||
|
data, which means that no data is copied. This operation is very efficient and can be used to
|
||
|
process external data using OpenCV functions. The external data is not automatically deallocated, so
|
||
|
you should take care of it.
|
||
|
@param steps Array of ndims-1 steps in case of a multi-dimensional array (the last step is always
|
||
|
set to the element size). If not specified, the matrix is assumed to be continuous.
|
||
|
*/
|
||
|
Mat(int ndims, const int* sizes, int type, void* data, const size_t* steps=0);
|
||
|
|
||
|
/** @overload
|
||
|
@param sizes Array of integers specifying an n-dimensional array shape.
|
||
|
@param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
|
||
|
CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
|
||
|
@param data Pointer to the user data. Matrix constructors that take data and step parameters do not
|
||
|
allocate matrix data. Instead, they just initialize the matrix header that points to the specified
|
||
|
data, which means that no data is copied. This operation is very efficient and can be used to
|
||
|
process external data using OpenCV functions. The external data is not automatically deallocated, so
|
||
|
you should take care of it.
|
||
|
@param steps Array of ndims-1 steps in case of a multi-dimensional array (the last step is always
|
||
|
set to the element size). If not specified, the matrix is assumed to be continuous.
|
||
|
*/
|
||
|
Mat(const std::vector<int>& sizes, int type, void* data, const size_t* steps=0);
|
||
|
|
||
|
/** @overload
|
||
|
@param m Array that (as a whole or partly) is assigned to the constructed matrix. No data is copied
|
||
|
by these constructors. Instead, the header pointing to m data or its sub-array is constructed and
|
||
|
associated with it. The reference counter, if any, is incremented. So, when you modify the matrix
|
||
|
formed using such a constructor, you also modify the corresponding elements of m . If you want to
|
||
|
have an independent copy of the sub-array, use Mat::clone() .
|
||
|
@param rowRange Range of the m rows to take. As usual, the range start is inclusive and the range
|
||
|
end is exclusive. Use Range::all() to take all the rows.
|
||
|
@param colRange Range of the m columns to take. Use Range::all() to take all the columns.
|
||
|
*/
|
||
|
Mat(const Mat& m, const Range& rowRange, const Range& colRange=Range::all());
|
||
|
|
||
|
/** @overload
|
||
|
@param m Array that (as a whole or partly) is assigned to the constructed matrix. No data is copied
|
||
|
by these constructors. Instead, the header pointing to m data or its sub-array is constructed and
|
||
|
associated with it. The reference counter, if any, is incremented. So, when you modify the matrix
|
||
|
formed using such a constructor, you also modify the corresponding elements of m . If you want to
|
||
|
have an independent copy of the sub-array, use Mat::clone() .
|
||
|
@param roi Region of interest.
|
||
|
*/
|
||
|
Mat(const Mat& m, const Rect& roi);
|
||
|
|
||
|
/** @overload
|
||
|
@param m Array that (as a whole or partly) is assigned to the constructed matrix. No data is copied
|
||
|
by these constructors. Instead, the header pointing to m data or its sub-array is constructed and
|
||
|
associated with it. The reference counter, if any, is incremented. So, when you modify the matrix
|
||
|
formed using such a constructor, you also modify the corresponding elements of m . If you want to
|
||
|
have an independent copy of the sub-array, use Mat::clone() .
|
||
|
@param ranges Array of selected ranges of m along each dimensionality.
|
||
|
*/
|
||
|
Mat(const Mat& m, const Range* ranges);
|
||
|
|
||
|
/** @overload
|
||
|
@param m Array that (as a whole or partly) is assigned to the constructed matrix. No data is copied
|
||
|
by these constructors. Instead, the header pointing to m data or its sub-array is constructed and
|
||
|
associated with it. The reference counter, if any, is incremented. So, when you modify the matrix
|
||
|
formed using such a constructor, you also modify the corresponding elements of m . If you want to
|
||
|
have an independent copy of the sub-array, use Mat::clone() .
|
||
|
@param ranges Array of selected ranges of m along each dimensionality.
|
||
|
*/
|
||
|
Mat(const Mat& m, const std::vector<Range>& ranges);
|
||
|
|
||
|
/** @overload
|
||
|
@param vec STL vector whose elements form the matrix. The matrix has a single column and the number
|
||
|
of rows equal to the number of vector elements. Type of the matrix matches the type of vector
|
||
|
elements. The constructor can handle arbitrary types, for which there is a properly declared
|
||
|
DataType . This means that the vector elements must be primitive numbers or uni-type numerical
|
||
|
tuples of numbers. Mixed-type structures are not supported. The corresponding constructor is
|
||
|
explicit. Since STL vectors are not automatically converted to Mat instances, you should write
|
||
|
Mat(vec) explicitly. Unless you copy the data into the matrix ( copyData=true ), no new elements
|
||
|
will be added to the vector because it can potentially yield vector data reallocation, and, thus,
|
||
|
the matrix data pointer will be invalid.
|
||
|
@param copyData Flag to specify whether the underlying data of the STL vector should be copied
|
||
|
to (true) or shared with (false) the newly constructed matrix. When the data is copied, the
|
||
|
allocated buffer is managed using Mat reference counting mechanism. While the data is shared,
|
||
|
the reference counter is NULL, and you should not deallocate the data until the matrix is
|
||
|
destructed.
|
||
|
*/
|
||
|
template<typename _Tp> explicit Mat(const std::vector<_Tp>& vec, bool copyData=false);
|
||
|
|
||
|
/** @overload
|
||
|
*/
|
||
|
template<typename _Tp, typename = typename std::enable_if<std::is_arithmetic<_Tp>::value>::type>
|
||
|
explicit Mat(const std::initializer_list<_Tp> list);
|
||
|
|
||
|
/** @overload
|
||
|
*/
|
||
|
template<typename _Tp> explicit Mat(const std::initializer_list<int> sizes, const std::initializer_list<_Tp> list);
|
||
|
|
||
|
/** @overload
|
||
|
*/
|
||
|
template<typename _Tp, size_t _Nm> explicit Mat(const std::array<_Tp, _Nm>& arr, bool copyData=false);
|
||
|
|
||
|
/** @overload
|
||
|
*/
|
||
|
template<typename _Tp, int n> explicit Mat(const Vec<_Tp, n>& vec, bool copyData=true);
|
||
|
|
||
|
/** @overload
|
||
|
*/
|
||
|
template<typename _Tp, int m, int n> explicit Mat(const Matx<_Tp, m, n>& mtx, bool copyData=true);
|
||
|
|
||
|
/** @overload
|
||
|
*/
|
||
|
template<typename _Tp> explicit Mat(const Point_<_Tp>& pt, bool copyData=true);
|
||
|
|
||
|
/** @overload
|
||
|
*/
|
||
|
template<typename _Tp> explicit Mat(const Point3_<_Tp>& pt, bool copyData=true);
|
||
|
|
||
|
/** @overload
|
||
|
*/
|
||
|
template<typename _Tp> explicit Mat(const MatCommaInitializer_<_Tp>& commaInitializer);
|
||
|
|
||
|
//! download data from GpuMat
|
||
|
explicit Mat(const cuda::GpuMat& m);
|
||
|
|
||
|
//! destructor - calls release()
|
||
|
~Mat();
|
||
|
|
||
|
/** @brief assignment operators
|
||
|
|
||
|
These are available assignment operators. Since they all are very different, make sure to read the
|
||
|
operator parameters description.
|
||
|
@param m Assigned, right-hand-side matrix. Matrix assignment is an O(1) operation. This means that
|
||
|
no data is copied but the data is shared and the reference counter, if any, is incremented. Before
|
||
|
assigning new data, the old data is de-referenced via Mat::release .
|
||
|
*/
|
||
|
Mat& operator = (const Mat& m);
|
||
|
|
||
|
/** @overload
|
||
|
@param expr Assigned matrix expression object. As opposite to the first form of the assignment
|
||
|
operation, the second form can reuse already allocated matrix if it has the right size and type to
|
||
|
fit the matrix expression result. It is automatically handled by the real function that the matrix
|
||
|
expressions is expanded to. For example, C=A+B is expanded to add(A, B, C), and add takes care of
|
||
|
automatic C reallocation.
|
||
|
*/
|
||
|
Mat& operator = (const MatExpr& expr);
|
||
|
|
||
|
//! retrieve UMat from Mat
|
||
|
UMat getUMat(AccessFlag accessFlags, UMatUsageFlags usageFlags = USAGE_DEFAULT) const;
|
||
|
|
||
|
/** @brief Creates a matrix header for the specified matrix row.
|
||
|
|
||
|
The method makes a new header for the specified matrix row and returns it. This is an O(1)
|
||
|
operation, regardless of the matrix size. The underlying data of the new matrix is shared with the
|
||
|
original matrix. Here is the example of one of the classical basic matrix processing operations,
|
||
|
axpy, used by LU and many other algorithms:
|
||
|
@code
|
||
|
inline void matrix_axpy(Mat& A, int i, int j, double alpha)
|
||
|
{
|
||
|
A.row(i) += A.row(j)*alpha;
|
||
|
}
|
||
|
@endcode
|
||
|
@note In the current implementation, the following code does not work as expected:
|
||
|
@code
|
||
|
Mat A;
|
||
|
...
|
||
|
A.row(i) = A.row(j); // will not work
|
||
|
@endcode
|
||
|
This happens because A.row(i) forms a temporary header that is further assigned to another header.
|
||
|
Remember that each of these operations is O(1), that is, no data is copied. Thus, the above
|
||
|
assignment is not true if you may have expected the j-th row to be copied to the i-th row. To
|
||
|
achieve that, you should either turn this simple assignment into an expression or use the
|
||
|
Mat::copyTo method:
|
||
|
@code
|
||
|
Mat A;
|
||
|
...
|
||
|
// works, but looks a bit obscure.
|
||
|
A.row(i) = A.row(j) + 0;
|
||
|
// this is a bit longer, but the recommended method.
|
||
|
A.row(j).copyTo(A.row(i));
|
||
|
@endcode
|
||
|
@param y A 0-based row index.
|
||
|
*/
|
||
|
Mat row(int y) const;
|
||
|
|
||
|
/** @brief Creates a matrix header for the specified matrix column.
|
||
|
|
||
|
The method makes a new header for the specified matrix column and returns it. This is an O(1)
|
||
|
operation, regardless of the matrix size. The underlying data of the new matrix is shared with the
|
||
|
original matrix. See also the Mat::row description.
|
||
|
@param x A 0-based column index.
|
||
|
*/
|
||
|
Mat col(int x) const;
|
||
|
|
||
|
/** @brief Creates a matrix header for the specified row span.
|
||
|
|
||
|
The method makes a new header for the specified row span of the matrix. Similarly to Mat::row and
|
||
|
Mat::col , this is an O(1) operation.
|
||
|
@param startrow An inclusive 0-based start index of the row span.
|
||
|
@param endrow An exclusive 0-based ending index of the row span.
|
||
|
*/
|
||
|
Mat rowRange(int startrow, int endrow) const;
|
||
|
|
||
|
/** @overload
|
||
|
@param r Range structure containing both the start and the end indices.
|
||
|
*/
|
||
|
Mat rowRange(const Range& r) const;
|
||
|
|
||
|
/** @brief Creates a matrix header for the specified column span.
|
||
|
|
||
|
The method makes a new header for the specified column span of the matrix. Similarly to Mat::row and
|
||
|
Mat::col , this is an O(1) operation.
|
||
|
@param startcol An inclusive 0-based start index of the column span.
|
||
|
@param endcol An exclusive 0-based ending index of the column span.
|
||
|
*/
|
||
|
Mat colRange(int startcol, int endcol) const;
|
||
|
|
||
|
/** @overload
|
||
|
@param r Range structure containing both the start and the end indices.
|
||
|
*/
|
||
|
Mat colRange(const Range& r) const;
|
||
|
|
||
|
/** @brief Extracts a diagonal from a matrix
|
||
|
|
||
|
The method makes a new header for the specified matrix diagonal. The new matrix is represented as a
|
||
|
single-column matrix. Similarly to Mat::row and Mat::col, this is an O(1) operation.
|
||
|
@param d index of the diagonal, with the following values:
|
||
|
- `d=0` is the main diagonal.
|
||
|
- `d<0` is a diagonal from the lower half. For example, d=-1 means the diagonal is set
|
||
|
immediately below the main one.
|
||
|
- `d>0` is a diagonal from the upper half. For example, d=1 means the diagonal is set
|
||
|
immediately above the main one.
|
||
|
For example:
|
||
|
@code
|
||
|
Mat m = (Mat_<int>(3,3) <<
|
||
|
1,2,3,
|
||
|
4,5,6,
|
||
|
7,8,9);
|
||
|
Mat d0 = m.diag(0);
|
||
|
Mat d1 = m.diag(1);
|
||
|
Mat d_1 = m.diag(-1);
|
||
|
@endcode
|
||
|
The resulting matrices are
|
||
|
@code
|
||
|
d0 =
|
||
|
[1;
|
||
|
5;
|
||
|
9]
|
||
|
d1 =
|
||
|
[2;
|
||
|
6]
|
||
|
d_1 =
|
||
|
[4;
|
||
|
8]
|
||
|
@endcode
|
||
|
*/
|
||
|
Mat diag(int d=0) const;
|
||
|
|
||
|
/** @brief creates a diagonal matrix
|
||
|
|
||
|
The method creates a square diagonal matrix from specified main diagonal.
|
||
|
@param d One-dimensional matrix that represents the main diagonal.
|
||
|
*/
|
||
|
CV_NODISCARD_STD static Mat diag(const Mat& d);
|
||
|
|
||
|
/** @brief Creates a full copy of the array and the underlying data.
|
||
|
|
||
|
The method creates a full copy of the array. The original step[] is not taken into account. So, the
|
||
|
array copy is a continuous array occupying total()*elemSize() bytes.
|
||
|
*/
|
||
|
CV_NODISCARD_STD Mat clone() const;
|
||
|
|
||
|
/** @brief Copies the matrix to another one.
|
||
|
|
||
|
The method copies the matrix data to another matrix. Before copying the data, the method invokes :
|
||
|
@code
|
||
|
m.create(this->size(), this->type());
|
||
|
@endcode
|
||
|
so that the destination matrix is reallocated if needed. While m.copyTo(m); works flawlessly, the
|
||
|
function does not handle the case of a partial overlap between the source and the destination
|
||
|
matrices.
|
||
|
|
||
|
When the operation mask is specified, if the Mat::create call shown above reallocates the matrix,
|
||
|
the newly allocated matrix is initialized with all zeros before copying the data.
|
||
|
@param m Destination matrix. If it does not have a proper size or type before the operation, it is
|
||
|
reallocated.
|
||
|
*/
|
||
|
void copyTo( OutputArray m ) const;
|
||
|
|
||
|
/** @overload
|
||
|
@param m Destination matrix. If it does not have a proper size or type before the operation, it is
|
||
|
reallocated.
|
||
|
@param mask Operation mask of the same size as \*this. Its non-zero elements indicate which matrix
|
||
|
elements need to be copied. The mask has to be of type CV_8U and can have 1 or multiple channels.
|
||
|
*/
|
||
|
void copyTo( OutputArray m, InputArray mask ) const;
|
||
|
|
||
|
/** @brief Converts an array to another data type with optional scaling.
|
||
|
|
||
|
The method converts source pixel values to the target data type. saturate_cast\<\> is applied at
|
||
|
the end to avoid possible overflows:
|
||
|
|
||
|
\f[m(x,y) = saturate \_ cast<rType>( \alpha (*this)(x,y) + \beta )\f]
|
||
|
@param m output matrix; if it does not have a proper size or type before the operation, it is
|
||
|
reallocated.
|
||
|
@param rtype desired output matrix type or, rather, the depth since the number of channels are the
|
||
|
same as the input has; if rtype is negative, the output matrix will have the same type as the input.
|
||
|
@param alpha optional scale factor.
|
||
|
@param beta optional delta added to the scaled values.
|
||
|
*/
|
||
|
void convertTo( OutputArray m, int rtype, double alpha=1, double beta=0 ) const;
|
||
|
|
||
|
/** @brief Provides a functional form of convertTo.
|
||
|
|
||
|
This is an internally used method called by the @ref MatrixExpressions engine.
|
||
|
@param m Destination array.
|
||
|
@param type Desired destination array depth (or -1 if it should be the same as the source type).
|
||
|
*/
|
||
|
void assignTo( Mat& m, int type=-1 ) const;
|
||
|
|
||
|
/** @brief Sets all or some of the array elements to the specified value.
|
||
|
@param s Assigned scalar converted to the actual array type.
|
||
|
*/
|
||
|
Mat& operator = (const Scalar& s);
|
||
|
|
||
|
/** @brief Sets all or some of the array elements to the specified value.
|
||
|
|
||
|
This is an advanced variant of the Mat::operator=(const Scalar& s) operator.
|
||
|
@param value Assigned scalar converted to the actual array type.
|
||
|
@param mask Operation mask of the same size as \*this. Its non-zero elements indicate which matrix
|
||
|
elements need to be copied. The mask has to be of type CV_8U and can have 1 or multiple channels
|
||
|
*/
|
||
|
Mat& setTo(InputArray value, InputArray mask=noArray());
|
||
|
|
||
|
/** @brief Changes the shape and/or the number of channels of a 2D matrix without copying the data.
|
||
|
|
||
|
The method makes a new matrix header for \*this elements. The new matrix may have a different size
|
||
|
and/or different number of channels. Any combination is possible if:
|
||
|
- No extra elements are included into the new matrix and no elements are excluded. Consequently,
|
||
|
the product rows\*cols\*channels() must stay the same after the transformation.
|
||
|
- No data is copied. That is, this is an O(1) operation. Consequently, if you change the number of
|
||
|
rows, or the operation changes the indices of elements row in some other way, the matrix must be
|
||
|
continuous. See Mat::isContinuous .
|
||
|
|
||
|
For example, if there is a set of 3D points stored as an STL vector, and you want to represent the
|
||
|
points as a 3xN matrix, do the following:
|
||
|
@code
|
||
|
std::vector<Point3f> vec;
|
||
|
...
|
||
|
Mat pointMat = Mat(vec). // convert vector to Mat, O(1) operation
|
||
|
reshape(1). // make Nx3 1-channel matrix out of Nx1 3-channel.
|
||
|
// Also, an O(1) operation
|
||
|
t(); // finally, transpose the Nx3 matrix.
|
||
|
// This involves copying all the elements
|
||
|
@endcode
|
||
|
3-channel 2x2 matrix reshaped to 1-channel 4x3 matrix, each column has values from one of original channels:
|
||
|
@code
|
||
|
Mat m(Size(2, 2), CV_8UC3, Scalar(1, 2, 3));
|
||
|
vector<int> new_shape {4, 3};
|
||
|
m = m.reshape(1, new_shape);
|
||
|
@endcode
|
||
|
or:
|
||
|
@code
|
||
|
Mat m(Size(2, 2), CV_8UC3, Scalar(1, 2, 3));
|
||
|
const int new_shape[] = {4, 3};
|
||
|
m = m.reshape(1, 2, new_shape);
|
||
|
@endcode
|
||
|
@param cn New number of channels. If the parameter is 0, the number of channels remains the same.
|
||
|
@param rows New number of rows. If the parameter is 0, the number of rows remains the same.
|
||
|
*/
|
||
|
Mat reshape(int cn, int rows=0) const;
|
||
|
|
||
|
/** @overload
|
||
|
* @param cn New number of channels. If the parameter is 0, the number of channels remains the same.
|
||
|
* @param newndims New number of dimentions.
|
||
|
* @param newsz Array with new matrix size by all dimentions. If some sizes are zero,
|
||
|
* the original sizes in those dimensions are presumed.
|
||
|
*/
|
||
|
Mat reshape(int cn, int newndims, const int* newsz) const;
|
||
|
|
||
|
/** @overload
|
||
|
* @param cn New number of channels. If the parameter is 0, the number of channels remains the same.
|
||
|
* @param newshape Vector with new matrix size by all dimentions. If some sizes are zero,
|
||
|
* the original sizes in those dimensions are presumed.
|
||
|
*/
|
||
|
Mat reshape(int cn, const std::vector<int>& newshape) const;
|
||
|
|
||
|
/** @brief Transposes a matrix.
|
||
|
|
||
|
The method performs matrix transposition by means of matrix expressions. It does not perform the
|
||
|
actual transposition but returns a temporary matrix transposition object that can be further used as
|
||
|
a part of more complex matrix expressions or can be assigned to a matrix:
|
||
|
@code
|
||
|
Mat A1 = A + Mat::eye(A.size(), A.type())*lambda;
|
||
|
Mat C = A1.t()*A1; // compute (A + lambda*I)^t * (A + lamda*I)
|
||
|
@endcode
|
||
|
*/
|
||
|
MatExpr t() const;
|
||
|
|
||
|
/** @brief Inverses a matrix.
|
||
|
|
||
|
The method performs a matrix inversion by means of matrix expressions. This means that a temporary
|
||
|
matrix inversion object is returned by the method and can be used further as a part of more complex
|
||
|
matrix expressions or can be assigned to a matrix.
|
||
|
@param method Matrix inversion method. One of cv::DecompTypes
|
||
|
*/
|
||
|
MatExpr inv(int method=DECOMP_LU) const;
|
||
|
|
||
|
/** @brief Performs an element-wise multiplication or division of the two matrices.
|
||
|
|
||
|
The method returns a temporary object encoding per-element array multiplication, with optional
|
||
|
scale. Note that this is not a matrix multiplication that corresponds to a simpler "\*" operator.
|
||
|
|
||
|
Example:
|
||
|
@code
|
||
|
Mat C = A.mul(5/B); // equivalent to divide(A, B, C, 5)
|
||
|
@endcode
|
||
|
@param m Another array of the same type and the same size as \*this, or a matrix expression.
|
||
|
@param scale Optional scale factor.
|
||
|
*/
|
||
|
MatExpr mul(InputArray m, double scale=1) const;
|
||
|
|
||
|
/** @brief Computes a cross-product of two 3-element vectors.
|
||
|
|
||
|
The method computes a cross-product of two 3-element vectors. The vectors must be 3-element
|
||
|
floating-point vectors of the same shape and size. The result is another 3-element vector of the
|
||
|
same shape and type as operands.
|
||
|
@param m Another cross-product operand.
|
||
|
*/
|
||
|
Mat cross(InputArray m) const;
|
||
|
|
||
|
/** @brief Computes a dot-product of two vectors.
|
||
|
|
||
|
The method computes a dot-product of two matrices. If the matrices are not single-column or
|
||
|
single-row vectors, the top-to-bottom left-to-right scan ordering is used to treat them as 1D
|
||
|
vectors. The vectors must have the same size and type. If the matrices have more than one channel,
|
||
|
the dot products from all the channels are summed together.
|
||
|
@param m another dot-product operand.
|
||
|
*/
|
||
|
double dot(InputArray m) const;
|
||
|
|
||
|
/** @brief Returns a zero array of the specified size and type.
|
||
|
|
||
|
The method returns a Matlab-style zero array initializer. It can be used to quickly form a constant
|
||
|
array as a function parameter, part of a matrix expression, or as a matrix initializer:
|
||
|
@code
|
||
|
Mat A;
|
||
|
A = Mat::zeros(3, 3, CV_32F);
|
||
|
@endcode
|
||
|
In the example above, a new matrix is allocated only if A is not a 3x3 floating-point matrix.
|
||
|
Otherwise, the existing matrix A is filled with zeros.
|
||
|
@param rows Number of rows.
|
||
|
@param cols Number of columns.
|
||
|
@param type Created matrix type.
|
||
|
*/
|
||
|
CV_NODISCARD_STD static MatExpr zeros(int rows, int cols, int type);
|
||
|
|
||
|
/** @overload
|
||
|
@param size Alternative to the matrix size specification Size(cols, rows) .
|
||
|
@param type Created matrix type.
|
||
|
*/
|
||
|
CV_NODISCARD_STD static MatExpr zeros(Size size, int type);
|
||
|
|
||
|
/** @overload
|
||
|
@param ndims Array dimensionality.
|
||
|
@param sz Array of integers specifying the array shape.
|
||
|
@param type Created matrix type.
|
||
|
*/
|
||
|
CV_NODISCARD_STD static MatExpr zeros(int ndims, const int* sz, int type);
|
||
|
|
||
|
/** @brief Returns an array of all 1's of the specified size and type.
|
||
|
|
||
|
The method returns a Matlab-style 1's array initializer, similarly to Mat::zeros. Note that using
|
||
|
this method you can initialize an array with an arbitrary value, using the following Matlab idiom:
|
||
|
@code
|
||
|
Mat A = Mat::ones(100, 100, CV_8U)*3; // make 100x100 matrix filled with 3.
|
||
|
@endcode
|
||
|
The above operation does not form a 100x100 matrix of 1's and then multiply it by 3. Instead, it
|
||
|
just remembers the scale factor (3 in this case) and use it when actually invoking the matrix
|
||
|
initializer.
|
||
|
@note In case of multi-channels type, only the first channel will be initialized with 1's, the
|
||
|
others will be set to 0's.
|
||
|
@param rows Number of rows.
|
||
|
@param cols Number of columns.
|
||
|
@param type Created matrix type.
|
||
|
*/
|
||
|
CV_NODISCARD_STD static MatExpr ones(int rows, int cols, int type);
|
||
|
|
||
|
/** @overload
|
||
|
@param size Alternative to the matrix size specification Size(cols, rows) .
|
||
|
@param type Created matrix type.
|
||
|
*/
|
||
|
CV_NODISCARD_STD static MatExpr ones(Size size, int type);
|
||
|
|
||
|
/** @overload
|
||
|
@param ndims Array dimensionality.
|
||
|
@param sz Array of integers specifying the array shape.
|
||
|
@param type Created matrix type.
|
||
|
*/
|
||
|
CV_NODISCARD_STD static MatExpr ones(int ndims, const int* sz, int type);
|
||
|
|
||
|
/** @brief Returns an identity matrix of the specified size and type.
|
||
|
|
||
|
The method returns a Matlab-style identity matrix initializer, similarly to Mat::zeros. Similarly to
|
||
|
Mat::ones, you can use a scale operation to create a scaled identity matrix efficiently:
|
||
|
@code
|
||
|
// make a 4x4 diagonal matrix with 0.1's on the diagonal.
|
||
|
Mat A = Mat::eye(4, 4, CV_32F)*0.1;
|
||
|
@endcode
|
||
|
@note In case of multi-channels type, identity matrix will be initialized only for the first channel,
|
||
|
the others will be set to 0's
|
||
|
@param rows Number of rows.
|
||
|
@param cols Number of columns.
|
||
|
@param type Created matrix type.
|
||
|
*/
|
||
|
CV_NODISCARD_STD static MatExpr eye(int rows, int cols, int type);
|
||
|
|
||
|
/** @overload
|
||
|
@param size Alternative matrix size specification as Size(cols, rows) .
|
||
|
@param type Created matrix type.
|
||
|
*/
|
||
|
CV_NODISCARD_STD static MatExpr eye(Size size, int type);
|
||
|
|
||
|
/** @brief Allocates new array data if needed.
|
||
|
|
||
|
This is one of the key Mat methods. Most new-style OpenCV functions and methods that produce arrays
|
||
|
call this method for each output array. The method uses the following algorithm:
|
||
|
|
||
|
-# If the current array shape and the type match the new ones, return immediately. Otherwise,
|
||
|
de-reference the previous data by calling Mat::release.
|
||
|
-# Initialize the new header.
|
||
|
-# Allocate the new data of total()\*elemSize() bytes.
|
||
|
-# Allocate the new, associated with the data, reference counter and set it to 1.
|
||
|
|
||
|
Such a scheme makes the memory management robust and efficient at the same time and helps avoid
|
||
|
extra typing for you. This means that usually there is no need to explicitly allocate output arrays.
|
||
|
That is, instead of writing:
|
||
|
@code
|
||
|
Mat color;
|
||
|
...
|
||
|
Mat gray(color.rows, color.cols, color.depth());
|
||
|
cvtColor(color, gray, COLOR_BGR2GRAY);
|
||
|
@endcode
|
||
|
you can simply write:
|
||
|
@code
|
||
|
Mat color;
|
||
|
...
|
||
|
Mat gray;
|
||
|
cvtColor(color, gray, COLOR_BGR2GRAY);
|
||
|
@endcode
|
||
|
because cvtColor, as well as the most of OpenCV functions, calls Mat::create() for the output array
|
||
|
internally.
|
||
|
@param rows New number of rows.
|
||
|
@param cols New number of columns.
|
||
|
@param type New matrix type.
|
||
|
*/
|
||
|
void create(int rows, int cols, int type);
|
||
|
|
||
|
/** @overload
|
||
|
@param size Alternative new matrix size specification: Size(cols, rows)
|
||
|
@param type New matrix type.
|
||
|
*/
|
||
|
void create(Size size, int type);
|
||
|
|
||
|
/** @overload
|
||
|
@param ndims New array dimensionality.
|
||
|
@param sizes Array of integers specifying a new array shape.
|
||
|
@param type New matrix type.
|
||
|
*/
|
||
|
void create(int ndims, const int* sizes, int type);
|
||
|
|
||
|
/** @overload
|
||
|
@param sizes Array of integers specifying a new array shape.
|
||
|
@param type New matrix type.
|
||
|
*/
|
||
|
void create(const std::vector<int>& sizes, int type);
|
||
|
|
||
|
/** @brief Increments the reference counter.
|
||
|
|
||
|
The method increments the reference counter associated with the matrix data. If the matrix header
|
||
|
points to an external data set (see Mat::Mat ), the reference counter is NULL, and the method has no
|
||
|
effect in this case. Normally, to avoid memory leaks, the method should not be called explicitly. It
|
||
|
is called implicitly by the matrix assignment operator. The reference counter increment is an atomic
|
||
|
operation on the platforms that support it. Thus, it is safe to operate on the same matrices
|
||
|
asynchronously in different threads.
|
||
|
*/
|
||
|
void addref();
|
||
|
|
||
|
/** @brief Decrements the reference counter and deallocates the matrix if needed.
|
||
|
|
||
|
The method decrements the reference counter associated with the matrix data. When the reference
|
||
|
counter reaches 0, the matrix data is deallocated and the data and the reference counter pointers
|
||
|
are set to NULL's. If the matrix header points to an external data set (see Mat::Mat ), the
|
||
|
reference counter is NULL, and the method has no effect in this case.
|
||
|
|
||
|
This method can be called manually to force the matrix data deallocation. But since this method is
|
||
|
automatically called in the destructor, or by any other method that changes the data pointer, it is
|
||
|
usually not needed. The reference counter decrement and check for 0 is an atomic operation on the
|
||
|
platforms that support it. Thus, it is safe to operate on the same matrices asynchronously in
|
||
|
different threads.
|
||
|
*/
|
||
|
void release();
|
||
|
|
||
|
//! internal use function, consider to use 'release' method instead; deallocates the matrix data
|
||
|
void deallocate();
|
||
|
//! internal use function; properly re-allocates _size, _step arrays
|
||
|
void copySize(const Mat& m);
|
||
|
|
||
|
/** @brief Reserves space for the certain number of rows.
|
||
|
|
||
|
The method reserves space for sz rows. If the matrix already has enough space to store sz rows,
|
||
|
nothing happens. If the matrix is reallocated, the first Mat::rows rows are preserved. The method
|
||
|
emulates the corresponding method of the STL vector class.
|
||
|
@param sz Number of rows.
|
||
|
*/
|
||
|
void reserve(size_t sz);
|
||
|
|
||
|
/** @brief Reserves space for the certain number of bytes.
|
||
|
|
||
|
The method reserves space for sz bytes. If the matrix already has enough space to store sz bytes,
|
||
|
nothing happens. If matrix has to be reallocated its previous content could be lost.
|
||
|
@param sz Number of bytes.
|
||
|
*/
|
||
|
void reserveBuffer(size_t sz);
|
||
|
|
||
|
/** @brief Changes the number of matrix rows.
|
||
|
|
||
|
The methods change the number of matrix rows. If the matrix is reallocated, the first
|
||
|
min(Mat::rows, sz) rows are preserved. The methods emulate the corresponding methods of the STL
|
||
|
vector class.
|
||
|
@param sz New number of rows.
|
||
|
*/
|
||
|
void resize(size_t sz);
|
||
|
|
||
|
/** @overload
|
||
|
@param sz New number of rows.
|
||
|
@param s Value assigned to the newly added elements.
|
||
|
*/
|
||
|
void resize(size_t sz, const Scalar& s);
|
||
|
|
||
|
//! internal function
|
||
|
void push_back_(const void* elem);
|
||
|
|
||
|
/** @brief Adds elements to the bottom of the matrix.
|
||
|
|
||
|
The methods add one or more elements to the bottom of the matrix. They emulate the corresponding
|
||
|
method of the STL vector class. When elem is Mat , its type and the number of columns must be the
|
||
|
same as in the container matrix.
|
||
|
@param elem Added element(s).
|
||
|
*/
|
||
|
template<typename _Tp> void push_back(const _Tp& elem);
|
||
|
|
||
|
/** @overload
|
||
|
@param elem Added element(s).
|
||
|
*/
|
||
|
template<typename _Tp> void push_back(const Mat_<_Tp>& elem);
|
||
|
|
||
|
/** @overload
|
||
|
@param elem Added element(s).
|
||
|
*/
|
||
|
template<typename _Tp> void push_back(const std::vector<_Tp>& elem);
|
||
|
|
||
|
/** @overload
|
||
|
@param m Added line(s).
|
||
|
*/
|
||
|
void push_back(const Mat& m);
|
||
|
|
||
|
/** @brief Removes elements from the bottom of the matrix.
|
||
|
|
||
|
The method removes one or more rows from the bottom of the matrix.
|
||
|
@param nelems Number of removed rows. If it is greater than the total number of rows, an exception
|
||
|
is thrown.
|
||
|
*/
|
||
|
void pop_back(size_t nelems=1);
|
||
|
|
||
|
/** @brief Locates the matrix header within a parent matrix.
|
||
|
|
||
|
After you extracted a submatrix from a matrix using Mat::row, Mat::col, Mat::rowRange,
|
||
|
Mat::colRange, and others, the resultant submatrix points just to the part of the original big
|
||
|
matrix. However, each submatrix contains information (represented by datastart and dataend
|
||
|
fields) that helps reconstruct the original matrix size and the position of the extracted
|
||
|
submatrix within the original matrix. The method locateROI does exactly that.
|
||
|
@param wholeSize Output parameter that contains the size of the whole matrix containing *this*
|
||
|
as a part.
|
||
|
@param ofs Output parameter that contains an offset of *this* inside the whole matrix.
|
||
|
*/
|
||
|
void locateROI( Size& wholeSize, Point& ofs ) const;
|
||
|
|
||
|
/** @brief Adjusts a submatrix size and position within the parent matrix.
|
||
|
|
||
|
The method is complimentary to Mat::locateROI . The typical use of these functions is to determine
|
||
|
the submatrix position within the parent matrix and then shift the position somehow. Typically, it
|
||
|
can be required for filtering operations when pixels outside of the ROI should be taken into
|
||
|
account. When all the method parameters are positive, the ROI needs to grow in all directions by the
|
||
|
specified amount, for example:
|
||
|
@code
|
||
|
A.adjustROI(2, 2, 2, 2);
|
||
|
@endcode
|
||
|
In this example, the matrix size is increased by 4 elements in each direction. The matrix is shifted
|
||
|
by 2 elements to the left and 2 elements up, which brings in all the necessary pixels for the
|
||
|
filtering with the 5x5 kernel.
|
||
|
|
||
|
adjustROI forces the adjusted ROI to be inside of the parent matrix that is boundaries of the
|
||
|
adjusted ROI are constrained by boundaries of the parent matrix. For example, if the submatrix A is
|
||
|
located in the first row of a parent matrix and you called A.adjustROI(2, 2, 2, 2) then A will not
|
||
|
be increased in the upward direction.
|
||
|
|
||
|
The function is used internally by the OpenCV filtering functions, like filter2D , morphological
|
||
|
operations, and so on.
|
||
|
@param dtop Shift of the top submatrix boundary upwards.
|
||
|
@param dbottom Shift of the bottom submatrix boundary downwards.
|
||
|
@param dleft Shift of the left submatrix boundary to the left.
|
||
|
@param dright Shift of the right submatrix boundary to the right.
|
||
|
@sa copyMakeBorder
|
||
|
*/
|
||
|
Mat& adjustROI( int dtop, int dbottom, int dleft, int dright );
|
||
|
|
||
|
/** @brief Extracts a rectangular submatrix.
|
||
|
|
||
|
The operators make a new header for the specified sub-array of \*this . They are the most
|
||
|
generalized forms of Mat::row, Mat::col, Mat::rowRange, and Mat::colRange . For example,
|
||
|
`A(Range(0, 10), Range::all())` is equivalent to `A.rowRange(0, 10)`. Similarly to all of the above,
|
||
|
the operators are O(1) operations, that is, no matrix data is copied.
|
||
|
@param rowRange Start and end row of the extracted submatrix. The upper boundary is not included. To
|
||
|
select all the rows, use Range::all().
|
||
|
@param colRange Start and end column of the extracted submatrix. The upper boundary is not included.
|
||
|
To select all the columns, use Range::all().
|
||
|
*/
|
||
|
Mat operator()( Range rowRange, Range colRange ) const;
|
||
|
|
||
|
/** @overload
|
||
|
@param roi Extracted submatrix specified as a rectangle.
|
||
|
*/
|
||
|
Mat operator()( const Rect& roi ) const;
|
||
|
|
||
|
/** @overload
|
||
|
@param ranges Array of selected ranges along each array dimension.
|
||
|
*/
|
||
|
Mat operator()( const Range* ranges ) const;
|
||
|
|
||
|
/** @overload
|
||
|
@param ranges Array of selected ranges along each array dimension.
|
||
|
*/
|
||
|
Mat operator()(const std::vector<Range>& ranges) const;
|
||
|
|
||
|
template<typename _Tp> operator std::vector<_Tp>() const;
|
||
|
template<typename _Tp, int n> operator Vec<_Tp, n>() const;
|
||
|
template<typename _Tp, int m, int n> operator Matx<_Tp, m, n>() const;
|
||
|
|
||
|
template<typename _Tp, std::size_t _Nm> operator std::array<_Tp, _Nm>() const;
|
||
|
|
||
|
/** @brief Reports whether the matrix is continuous or not.
|
||
|
|
||
|
The method returns true if the matrix elements are stored continuously without gaps at the end of
|
||
|
each row. Otherwise, it returns false. Obviously, 1x1 or 1xN matrices are always continuous.
|
||
|
Matrices created with Mat::create are always continuous. But if you extract a part of the matrix
|
||
|
using Mat::col, Mat::diag, and so on, or constructed a matrix header for externally allocated data,
|
||
|
such matrices may no longer have this property.
|
||
|
|
||
|
The continuity flag is stored as a bit in the Mat::flags field and is computed automatically when
|
||
|
you construct a matrix header. Thus, the continuity check is a very fast operation, though
|
||
|
theoretically it could be done as follows:
|
||
|
@code
|
||
|
// alternative implementation of Mat::isContinuous()
|
||
|
bool myCheckMatContinuity(const Mat& m)
|
||
|
{
|
||
|
//return (m.flags & Mat::CONTINUOUS_FLAG) != 0;
|
||
|
return m.rows == 1 || m.step == m.cols*m.elemSize();
|
||
|
}
|
||
|
@endcode
|
||
|
The method is used in quite a few of OpenCV functions. The point is that element-wise operations
|
||
|
(such as arithmetic and logical operations, math functions, alpha blending, color space
|
||
|
transformations, and others) do not depend on the image geometry. Thus, if all the input and output
|
||
|
arrays are continuous, the functions can process them as very long single-row vectors. The example
|
||
|
below illustrates how an alpha-blending function can be implemented:
|
||
|
@code
|
||
|
template<typename T>
|
||
|
void alphaBlendRGBA(const Mat& src1, const Mat& src2, Mat& dst)
|
||
|
{
|
||
|
const float alpha_scale = (float)std::numeric_limits<T>::max(),
|
||
|
inv_scale = 1.f/alpha_scale;
|
||
|
|
||
|
CV_Assert( src1.type() == src2.type() &&
|
||
|
src1.type() == CV_MAKETYPE(traits::Depth<T>::value, 4) &&
|
||
|
src1.size() == src2.size());
|
||
|
Size size = src1.size();
|
||
|
dst.create(size, src1.type());
|
||
|
|
||
|
// here is the idiom: check the arrays for continuity and,
|
||
|
// if this is the case,
|
||
|
// treat the arrays as 1D vectors
|
||
|
if( src1.isContinuous() && src2.isContinuous() && dst.isContinuous() )
|
||
|
{
|
||
|
size.width *= size.height;
|
||
|
size.height = 1;
|
||
|
}
|
||
|
size.width *= 4;
|
||
|
|
||
|
for( int i = 0; i < size.height; i++ )
|
||
|
{
|
||
|
// when the arrays are continuous,
|
||
|
// the outer loop is executed only once
|
||
|
const T* ptr1 = src1.ptr<T>(i);
|
||
|
const T* ptr2 = src2.ptr<T>(i);
|
||
|
T* dptr = dst.ptr<T>(i);
|
||
|
|
||
|
for( int j = 0; j < size.width; j += 4 )
|
||
|
{
|
||
|
float alpha = ptr1[j+3]*inv_scale, beta = ptr2[j+3]*inv_scale;
|
||
|
dptr[j] = saturate_cast<T>(ptr1[j]*alpha + ptr2[j]*beta);
|
||
|
dptr[j+1] = saturate_cast<T>(ptr1[j+1]*alpha + ptr2[j+1]*beta);
|
||
|
dptr[j+2] = saturate_cast<T>(ptr1[j+2]*alpha + ptr2[j+2]*beta);
|
||
|
dptr[j+3] = saturate_cast<T>((1 - (1-alpha)*(1-beta))*alpha_scale);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
@endcode
|
||
|
This approach, while being very simple, can boost the performance of a simple element-operation by
|
||
|
10-20 percents, especially if the image is rather small and the operation is quite simple.
|
||
|
|
||
|
Another OpenCV idiom in this function, a call of Mat::create for the destination array, that
|
||
|
allocates the destination array unless it already has the proper size and type. And while the newly
|
||
|
allocated arrays are always continuous, you still need to check the destination array because
|
||
|
Mat::create does not always allocate a new matrix.
|
||
|
*/
|
||
|
bool isContinuous() const;
|
||
|
|
||
|
//! returns true if the matrix is a submatrix of another matrix
|
||
|
bool isSubmatrix() const;
|
||
|
|
||
|
/** @brief Returns the matrix element size in bytes.
|
||
|
|
||
|
The method returns the matrix element size in bytes. For example, if the matrix type is CV_16SC3 ,
|
||
|
the method returns 3\*sizeof(short) or 6.
|
||
|
*/
|
||
|
size_t elemSize() const;
|
||
|
|
||
|
/** @brief Returns the size of each matrix element channel in bytes.
|
||
|
|
||
|
The method returns the matrix element channel size in bytes, that is, it ignores the number of
|
||
|
channels. For example, if the matrix type is CV_16SC3 , the method returns sizeof(short) or 2.
|
||
|
*/
|
||
|
size_t elemSize1() const;
|
||
|
|
||
|
/** @brief Returns the type of a matrix element.
|
||
|
|
||
|
The method returns a matrix element type. This is an identifier compatible with the CvMat type
|
||
|
system, like CV_16SC3 or 16-bit signed 3-channel array, and so on.
|
||
|
*/
|
||
|
int type() const;
|
||
|
|
||
|
/** @brief Returns the depth of a matrix element.
|
||
|
|
||
|
The method returns the identifier of the matrix element depth (the type of each individual channel).
|
||
|
For example, for a 16-bit signed element array, the method returns CV_16S . A complete list of
|
||
|
matrix types contains the following values:
|
||
|
- CV_8U - 8-bit unsigned integers ( 0..255 )
|
||
|
- CV_8S - 8-bit signed integers ( -128..127 )
|
||
|
- CV_16U - 16-bit unsigned integers ( 0..65535 )
|
||
|
- CV_16S - 16-bit signed integers ( -32768..32767 )
|
||
|
- CV_32S - 32-bit signed integers ( -2147483648..2147483647 )
|
||
|
- CV_32F - 32-bit floating-point numbers ( -FLT_MAX..FLT_MAX, INF, NAN )
|
||
|
- CV_64F - 64-bit floating-point numbers ( -DBL_MAX..DBL_MAX, INF, NAN )
|
||
|
*/
|
||
|
int depth() const;
|
||
|
|
||
|
/** @brief Returns the number of matrix channels.
|
||
|
|
||
|
The method returns the number of matrix channels.
|
||
|
*/
|
||
|
int channels() const;
|
||
|
|
||
|
/** @brief Returns a normalized step.
|
||
|
|
||
|
The method returns a matrix step divided by Mat::elemSize1() . It can be useful to quickly access an
|
||
|
arbitrary matrix element.
|
||
|
*/
|
||
|
size_t step1(int i=0) const;
|
||
|
|
||
|
/** @brief Returns true if the array has no elements.
|
||
|
|
||
|
The method returns true if Mat::total() is 0 or if Mat::data is NULL. Because of pop_back() and
|
||
|
resize() methods `M.total() == 0` does not imply that `M.data == NULL`.
|
||
|
*/
|
||
|
bool empty() const;
|
||
|
|
||
|
/** @brief Returns the total number of array elements.
|
||
|
|
||
|
The method returns the number of array elements (a number of pixels if the array represents an
|
||
|
image).
|
||
|
*/
|
||
|
size_t total() const;
|
||
|
|
||
|
/** @brief Returns the total number of array elements.
|
||
|
|
||
|
The method returns the number of elements within a certain sub-array slice with startDim <= dim < endDim
|
||
|
*/
|
||
|
size_t total(int startDim, int endDim=INT_MAX) const;
|
||
|
|
||
|
/**
|
||
|
* @param elemChannels Number of channels or number of columns the matrix should have.
|
||
|
* For a 2-D matrix, when the matrix has only 1 column, then it should have
|
||
|
* elemChannels channels; When the matrix has only 1 channel,
|
||
|
* then it should have elemChannels columns.
|
||
|
* For a 3-D matrix, it should have only one channel. Furthermore,
|
||
|
* if the number of planes is not one, then the number of rows
|
||
|
* within every plane has to be 1; if the number of rows within
|
||
|
* every plane is not 1, then the number of planes has to be 1.
|
||
|
* @param depth The depth the matrix should have. Set it to -1 when any depth is fine.
|
||
|
* @param requireContinuous Set it to true to require the matrix to be continuous
|
||
|
* @return -1 if the requirement is not satisfied.
|
||
|
* Otherwise, it returns the number of elements in the matrix. Note
|
||
|
* that an element may have multiple channels.
|
||
|
*
|
||
|
* The following code demonstrates its usage for a 2-d matrix:
|
||
|
* @snippet snippets/core_mat_checkVector.cpp example-2d
|
||
|
*
|
||
|
* The following code demonstrates its usage for a 3-d matrix:
|
||
|
* @snippet snippets/core_mat_checkVector.cpp example-3d
|
||
|
*/
|
||
|
int checkVector(int elemChannels, int depth=-1, bool requireContinuous=true) const;
|
||
|
|
||
|
/** @brief Returns a pointer to the specified matrix row.
|
||
|
|
||
|
The methods return `uchar*` or typed pointer to the specified matrix row. See the sample in
|
||
|
Mat::isContinuous to know how to use these methods.
|
||
|
@param i0 A 0-based row index.
|
||
|
*/
|
||
|
uchar* ptr(int i0=0);
|
||
|
/** @overload */
|
||
|
const uchar* ptr(int i0=0) const;
|
||
|
|
||
|
/** @overload
|
||
|
@param row Index along the dimension 0
|
||
|
@param col Index along the dimension 1
|
||
|
*/
|
||
|
uchar* ptr(int row, int col);
|
||
|
/** @overload
|
||
|
@param row Index along the dimension 0
|
||
|
@param col Index along the dimension 1
|
||
|
*/
|
||
|
const uchar* ptr(int row, int col) const;
|
||
|
|
||
|
/** @overload */
|
||
|
uchar* ptr(int i0, int i1, int i2);
|
||
|
/** @overload */
|
||
|
const uchar* ptr(int i0, int i1, int i2) const;
|
||
|
|
||
|
/** @overload */
|
||
|
uchar* ptr(const int* idx);
|
||
|
/** @overload */
|
||
|
const uchar* ptr(const int* idx) const;
|
||
|
/** @overload */
|
||
|
template<int n> uchar* ptr(const Vec<int, n>& idx);
|
||
|
/** @overload */
|
||
|
template<int n> const uchar* ptr(const Vec<int, n>& idx) const;
|
||
|
|
||
|
/** @overload */
|
||
|
template<typename _Tp> _Tp* ptr(int i0=0);
|
||
|
/** @overload */
|
||
|
template<typename _Tp> const _Tp* ptr(int i0=0) const;
|
||
|
/** @overload
|
||
|
@param row Index along the dimension 0
|
||
|
@param col Index along the dimension 1
|
||
|
*/
|
||
|
template<typename _Tp> _Tp* ptr(int row, int col);
|
||
|
/** @overload
|
||
|
@param row Index along the dimension 0
|
||
|
@param col Index along the dimension 1
|
||
|
*/
|
||
|
template<typename _Tp> const _Tp* ptr(int row, int col) const;
|
||
|
/** @overload */
|
||
|
template<typename _Tp> _Tp* ptr(int i0, int i1, int i2);
|
||
|
/** @overload */
|
||
|
template<typename _Tp> const _Tp* ptr(int i0, int i1, int i2) const;
|
||
|
/** @overload */
|
||
|
template<typename _Tp> _Tp* ptr(const int* idx);
|
||
|
/** @overload */
|
||
|
template<typename _Tp> const _Tp* ptr(const int* idx) const;
|
||
|
/** @overload */
|
||
|
template<typename _Tp, int n> _Tp* ptr(const Vec<int, n>& idx);
|
||
|
/** @overload */
|
||
|
template<typename _Tp, int n> const _Tp* ptr(const Vec<int, n>& idx) const;
|
||
|
|
||
|
/** @brief Returns a reference to the specified array element.
|
||
|
|
||
|
The template methods return a reference to the specified array element. For the sake of higher
|
||
|
performance, the index range checks are only performed in the Debug configuration.
|
||
|
|
||
|
Note that the variants with a single index (i) can be used to access elements of single-row or
|
||
|
single-column 2-dimensional arrays. That is, if, for example, A is a 1 x N floating-point matrix and
|
||
|
B is an M x 1 integer matrix, you can simply write `A.at<float>(k+4)` and `B.at<int>(2*i+1)`
|
||
|
instead of `A.at<float>(0,k+4)` and `B.at<int>(2*i+1,0)`, respectively.
|
||
|
|
||
|
The example below initializes a Hilbert matrix:
|
||
|
@code
|
||
|
Mat H(100, 100, CV_64F);
|
||
|
for(int i = 0; i < H.rows; i++)
|
||
|
for(int j = 0; j < H.cols; j++)
|
||
|
H.at<double>(i,j)=1./(i+j+1);
|
||
|
@endcode
|
||
|
|
||
|
Keep in mind that the size identifier used in the at operator cannot be chosen at random. It depends
|
||
|
on the image from which you are trying to retrieve the data. The table below gives a better insight in this:
|
||
|
- If matrix is of type `CV_8U` then use `Mat.at<uchar>(y,x)`.
|
||
|
- If matrix is of type `CV_8S` then use `Mat.at<schar>(y,x)`.
|
||
|
- If matrix is of type `CV_16U` then use `Mat.at<ushort>(y,x)`.
|
||
|
- If matrix is of type `CV_16S` then use `Mat.at<short>(y,x)`.
|
||
|
- If matrix is of type `CV_32S` then use `Mat.at<int>(y,x)`.
|
||
|
- If matrix is of type `CV_32F` then use `Mat.at<float>(y,x)`.
|
||
|
- If matrix is of type `CV_64F` then use `Mat.at<double>(y,x)`.
|
||
|
|
||
|
@param i0 Index along the dimension 0
|
||
|
*/
|
||
|
template<typename _Tp> _Tp& at(int i0=0);
|
||
|
/** @overload
|
||
|
@param i0 Index along the dimension 0
|
||
|
*/
|
||
|
template<typename _Tp> const _Tp& at(int i0=0) const;
|
||
|
/** @overload
|
||
|
@param row Index along the dimension 0
|
||
|
@param col Index along the dimension 1
|
||
|
*/
|
||
|
template<typename _Tp> _Tp& at(int row, int col);
|
||
|
/** @overload
|
||
|
@param row Index along the dimension 0
|
||
|
@param col Index along the dimension 1
|
||
|
*/
|
||
|
template<typename _Tp> const _Tp& at(int row, int col) const;
|
||
|
|
||
|
/** @overload
|
||
|
@param i0 Index along the dimension 0
|
||
|
@param i1 Index along the dimension 1
|
||
|
@param i2 Index along the dimension 2
|
||
|
*/
|
||
|
template<typename _Tp> _Tp& at(int i0, int i1, int i2);
|
||
|
/** @overload
|
||
|
@param i0 Index along the dimension 0
|
||
|
@param i1 Index along the dimension 1
|
||
|
@param i2 Index along the dimension 2
|
||
|
*/
|
||
|
template<typename _Tp> const _Tp& at(int i0, int i1, int i2) const;
|
||
|
|
||
|
/** @overload
|
||
|
@param idx Array of Mat::dims indices.
|
||
|
*/
|
||
|
template<typename _Tp> _Tp& at(const int* idx);
|
||
|
/** @overload
|
||
|
@param idx Array of Mat::dims indices.
|
||
|
*/
|
||
|
template<typename _Tp> const _Tp& at(const int* idx) const;
|
||
|
|
||
|
/** @overload */
|
||
|
template<typename _Tp, int n> _Tp& at(const Vec<int, n>& idx);
|
||
|
/** @overload */
|
||
|
template<typename _Tp, int n> const _Tp& at(const Vec<int, n>& idx) const;
|
||
|
|
||
|
/** @overload
|
||
|
special versions for 2D arrays (especially convenient for referencing image pixels)
|
||
|
@param pt Element position specified as Point(j,i) .
|
||
|
*/
|
||
|
template<typename _Tp> _Tp& at(Point pt);
|
||
|
/** @overload
|
||
|
special versions for 2D arrays (especially convenient for referencing image pixels)
|
||
|
@param pt Element position specified as Point(j,i) .
|
||
|
*/
|
||
|
template<typename _Tp> const _Tp& at(Point pt) const;
|
||
|
|
||
|
/** @brief Returns the matrix iterator and sets it to the first matrix element.
|
||
|
|
||
|
The methods return the matrix read-only or read-write iterators. The use of matrix iterators is very
|
||
|
similar to the use of bi-directional STL iterators. In the example below, the alpha blending
|
||
|
function is rewritten using the matrix iterators:
|
||
|
@code
|
||
|
template<typename T>
|
||
|
void alphaBlendRGBA(const Mat& src1, const Mat& src2, Mat& dst)
|
||
|
{
|
||
|
typedef Vec<T, 4> VT;
|
||
|
|
||
|
const float alpha_scale = (float)std::numeric_limits<T>::max(),
|
||
|
inv_scale = 1.f/alpha_scale;
|
||
|
|
||
|
CV_Assert( src1.type() == src2.type() &&
|
||
|
src1.type() == traits::Type<VT>::value &&
|
||
|
src1.size() == src2.size());
|
||
|
Size size = src1.size();
|
||
|
dst.create(size, src1.type());
|
||
|
|
||
|
MatConstIterator_<VT> it1 = src1.begin<VT>(), it1_end = src1.end<VT>();
|
||
|
MatConstIterator_<VT> it2 = src2.begin<VT>();
|
||
|
MatIterator_<VT> dst_it = dst.begin<VT>();
|
||
|
|
||
|
for( ; it1 != it1_end; ++it1, ++it2, ++dst_it )
|
||
|
{
|
||
|
VT pix1 = *it1, pix2 = *it2;
|
||
|
float alpha = pix1[3]*inv_scale, beta = pix2[3]*inv_scale;
|
||
|
*dst_it = VT(saturate_cast<T>(pix1[0]*alpha + pix2[0]*beta),
|
||
|
saturate_cast<T>(pix1[1]*alpha + pix2[1]*beta),
|
||
|
saturate_cast<T>(pix1[2]*alpha + pix2[2]*beta),
|
||
|
saturate_cast<T>((1 - (1-alpha)*(1-beta))*alpha_scale));
|
||
|
}
|
||
|
}
|
||
|
@endcode
|
||
|
*/
|
||
|
template<typename _Tp> MatIterator_<_Tp> begin();
|
||
|
template<typename _Tp> MatConstIterator_<_Tp> begin() const;
|
||
|
|
||
|
/** @brief Same as begin() but for inverse traversal
|
||
|
*/
|
||
|
template<typename _Tp> std::reverse_iterator<MatIterator_<_Tp>> rbegin();
|
||
|
template<typename _Tp> std::reverse_iterator<MatConstIterator_<_Tp>> rbegin() const;
|
||
|
|
||
|
/** @brief Returns the matrix iterator and sets it to the after-last matrix element.
|
||
|
|
||
|
The methods return the matrix read-only or read-write iterators, set to the point following the last
|
||
|
matrix element.
|
||
|
*/
|
||
|
template<typename _Tp> MatIterator_<_Tp> end();
|
||
|
template<typename _Tp> MatConstIterator_<_Tp> end() const;
|
||
|
|
||
|
/** @brief Same as end() but for inverse traversal
|
||
|
*/
|
||
|
template<typename _Tp> std::reverse_iterator< MatIterator_<_Tp>> rend();
|
||
|
template<typename _Tp> std::reverse_iterator< MatConstIterator_<_Tp>> rend() const;
|
||
|
|
||
|
|
||
|
/** @brief Runs the given functor over all matrix elements in parallel.
|
||
|
|
||
|
The operation passed as argument has to be a function pointer, a function object or a lambda(C++11).
|
||
|
|
||
|
Example 1. All of the operations below put 0xFF the first channel of all matrix elements:
|
||
|
@code
|
||
|
Mat image(1920, 1080, CV_8UC3);
|
||
|
typedef cv::Point3_<uint8_t> Pixel;
|
||
|
|
||
|
// first. raw pointer access.
|
||
|
for (int r = 0; r < image.rows; ++r) {
|
||
|
Pixel* ptr = image.ptr<Pixel>(r, 0);
|
||
|
const Pixel* ptr_end = ptr + image.cols;
|
||
|
for (; ptr != ptr_end; ++ptr) {
|
||
|
ptr->x = 255;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Using MatIterator. (Simple but there are a Iterator's overhead)
|
||
|
for (Pixel &p : cv::Mat_<Pixel>(image)) {
|
||
|
p.x = 255;
|
||
|
}
|
||
|
|
||
|
// Parallel execution with function object.
|
||
|
struct Operator {
|
||
|
void operator ()(Pixel &pixel, const int * position) {
|
||
|
pixel.x = 255;
|
||
|
}
|
||
|
};
|
||
|
image.forEach<Pixel>(Operator());
|
||
|
|
||
|
// Parallel execution using C++11 lambda.
|
||
|
image.forEach<Pixel>([](Pixel &p, const int * position) -> void {
|
||
|
p.x = 255;
|
||
|
});
|
||
|
@endcode
|
||
|
Example 2. Using the pixel's position:
|
||
|
@code
|
||
|
// Creating 3D matrix (255 x 255 x 255) typed uint8_t
|
||
|
// and initialize all elements by the value which equals elements position.
|
||
|
// i.e. pixels (x,y,z) = (1,2,3) is (b,g,r) = (1,2,3).
|
||
|
|
||
|
int sizes[] = { 255, 255, 255 };
|
||
|
typedef cv::Point3_<uint8_t> Pixel;
|
||
|
|
||
|
Mat_<Pixel> image = Mat::zeros(3, sizes, CV_8UC3);
|
||
|
|
||
|
image.forEach<Pixel>([](Pixel& pixel, const int position[]) -> void {
|
||
|
pixel.x = position[0];
|
||
|
pixel.y = position[1];
|
||
|
pixel.z = position[2];
|
||
|
});
|
||
|
@endcode
|
||
|
*/
|
||
|
template<typename _Tp, typename Functor> void forEach(const Functor& operation);
|
||
|
/** @overload */
|
||
|
template<typename _Tp, typename Functor> void forEach(const Functor& operation) const;
|
||
|
|
||
|
Mat(Mat&& m);
|
||
|
Mat& operator = (Mat&& m);
|
||
|
|
||
|
enum { MAGIC_VAL = 0x42FF0000, AUTO_STEP = 0, CONTINUOUS_FLAG = CV_MAT_CONT_FLAG, SUBMATRIX_FLAG = CV_SUBMAT_FLAG };
|
||
|
enum { MAGIC_MASK = 0xFFFF0000, TYPE_MASK = 0x00000FFF, DEPTH_MASK = 7 };
|
||
|
|
||
|
/*! includes several bit-fields:
|
||
|
- the magic signature
|
||
|
- continuity flag
|
||
|
- depth
|
||
|
- number of channels
|
||
|
*/
|
||
|
int flags;
|
||
|
//! the matrix dimensionality, >= 2
|
||
|
int dims;
|
||
|
//! the number of rows and columns or (-1, -1) when the matrix has more than 2 dimensions
|
||
|
int rows, cols;
|
||
|
//! pointer to the data
|
||
|
uchar* data;
|
||
|
|
||
|
//! helper fields used in locateROI and adjustROI
|
||
|
const uchar* datastart;
|
||
|
const uchar* dataend;
|
||
|
const uchar* datalimit;
|
||
|
|
||
|
//! custom allocator
|
||
|
MatAllocator* allocator;
|
||
|
//! and the standard allocator
|
||
|
static MatAllocator* getStdAllocator();
|
||
|
static MatAllocator* getDefaultAllocator();
|
||
|
static void setDefaultAllocator(MatAllocator* allocator);
|
||
|
|
||
|
//! internal use method: updates the continuity flag
|
||
|
void updateContinuityFlag();
|
||
|
|
||
|
//! interaction with UMat
|
||
|
UMatData* u;
|
||
|
|
||
|
MatSize size;
|
||
|
MatStep step;
|
||
|
|
||
|
protected:
|
||
|
template<typename _Tp, typename Functor> void forEach_impl(const Functor& operation);
|
||
|
};
|
||
|
|
||
|
|
||
|
///////////////////////////////// Mat_<_Tp> ////////////////////////////////////
|
||
|
|
||
|
/** @brief Template matrix class derived from Mat
|
||
|
|
||
|
@code{.cpp}
|
||
|
template<typename _Tp> class Mat_ : public Mat
|
||
|
{
|
||
|
public:
|
||
|
// ... some specific methods
|
||
|
// and
|
||
|
// no new extra fields
|
||
|
};
|
||
|
@endcode
|
||
|
The class `Mat_<_Tp>` is a *thin* template wrapper on top of the Mat class. It does not have any
|
||
|
extra data fields. Nor this class nor Mat has any virtual methods. Thus, references or pointers to
|
||
|
these two classes can be freely but carefully converted one to another. For example:
|
||
|
@code{.cpp}
|
||
|
// create a 100x100 8-bit matrix
|
||
|
Mat M(100,100,CV_8U);
|
||
|
// this will be compiled fine. no any data conversion will be done.
|
||
|
Mat_<float>& M1 = (Mat_<float>&)M;
|
||
|
// the program is likely to crash at the statement below
|
||
|
M1(99,99) = 1.f;
|
||
|
@endcode
|
||
|
While Mat is sufficient in most cases, Mat_ can be more convenient if you use a lot of element
|
||
|
access operations and if you know matrix type at the compilation time. Note that
|
||
|
`Mat::at(int y,int x)` and `Mat_::operator()(int y,int x)` do absolutely the same
|
||
|
and run at the same speed, but the latter is certainly shorter:
|
||
|
@code{.cpp}
|
||
|
Mat_<double> M(20,20);
|
||
|
for(int i = 0; i < M.rows; i++)
|
||
|
for(int j = 0; j < M.cols; j++)
|
||
|
M(i,j) = 1./(i+j+1);
|
||
|
Mat E, V;
|
||
|
eigen(M,E,V);
|
||
|
cout << E.at<double>(0,0)/E.at<double>(M.rows-1,0);
|
||
|
@endcode
|
||
|
To use Mat_ for multi-channel images/matrices, pass Vec as a Mat_ parameter:
|
||
|
@code{.cpp}
|
||
|
// allocate a 320x240 color image and fill it with green (in RGB space)
|
||
|
Mat_<Vec3b> img(240, 320, Vec3b(0,255,0));
|
||
|
// now draw a diagonal white line
|
||
|
for(int i = 0; i < 100; i++)
|
||
|
img(i,i)=Vec3b(255,255,255);
|
||
|
// and now scramble the 2nd (red) channel of each pixel
|
||
|
for(int i = 0; i < img.rows; i++)
|
||
|
for(int j = 0; j < img.cols; j++)
|
||
|
img(i,j)[2] ^= (uchar)(i ^ j);
|
||
|
@endcode
|
||
|
Mat_ is fully compatible with C++11 range-based for loop. For example such loop
|
||
|
can be used to safely apply look-up table:
|
||
|
@code{.cpp}
|
||
|
void applyTable(Mat_<uchar>& I, const uchar* const table)
|
||
|
{
|
||
|
for(auto& pixel : I)
|
||
|
{
|
||
|
pixel = table[pixel];
|
||
|
}
|
||
|
}
|
||
|
@endcode
|
||
|
*/
|
||
|
template<typename _Tp> class Mat_ : public Mat
|
||
|
{
|
||
|
public:
|
||
|
typedef _Tp value_type;
|
||
|
typedef typename DataType<_Tp>::channel_type channel_type;
|
||
|
typedef MatIterator_<_Tp> iterator;
|
||
|
typedef MatConstIterator_<_Tp> const_iterator;
|
||
|
|
||
|
//! default constructor
|
||
|
Mat_() CV_NOEXCEPT;
|
||
|
//! equivalent to Mat(_rows, _cols, DataType<_Tp>::type)
|
||
|
Mat_(int _rows, int _cols);
|
||
|
//! constructor that sets each matrix element to specified value
|
||
|
Mat_(int _rows, int _cols, const _Tp& value);
|
||
|
//! equivalent to Mat(_size, DataType<_Tp>::type)
|
||
|
explicit Mat_(Size _size);
|
||
|
//! constructor that sets each matrix element to specified value
|
||
|
Mat_(Size _size, const _Tp& value);
|
||
|
//! n-dim array constructor
|
||
|
Mat_(int _ndims, const int* _sizes);
|
||
|
//! n-dim array constructor that sets each matrix element to specified value
|
||
|
Mat_(int _ndims, const int* _sizes, const _Tp& value);
|
||
|
//! copy/conversion constructor. If m is of different type, it's converted
|
||
|
Mat_(const Mat& m);
|
||
|
//! copy constructor
|
||
|
Mat_(const Mat_& m);
|
||
|
//! constructs a matrix on top of user-allocated data. step is in bytes(!!!), regardless of the type
|
||
|
Mat_(int _rows, int _cols, _Tp* _data, size_t _step=AUTO_STEP);
|
||
|
//! constructs n-dim matrix on top of user-allocated data. steps are in bytes(!!!), regardless of the type
|
||
|
Mat_(int _ndims, const int* _sizes, _Tp* _data, const size_t* _steps=0);
|
||
|
//! selects a submatrix
|
||
|
Mat_(const Mat_& m, const Range& rowRange, const Range& colRange=Range::all());
|
||
|
//! selects a submatrix
|
||
|
Mat_(const Mat_& m, const Rect& roi);
|
||
|
//! selects a submatrix, n-dim version
|
||
|
Mat_(const Mat_& m, const Range* ranges);
|
||
|
//! selects a submatrix, n-dim version
|
||
|
Mat_(const Mat_& m, const std::vector<Range>& ranges);
|
||
|
//! from a matrix expression
|
||
|
explicit Mat_(const MatExpr& e);
|
||
|
//! makes a matrix out of Vec, std::vector, Point_ or Point3_. The matrix will have a single column
|
||
|
explicit Mat_(const std::vector<_Tp>& vec, bool copyData=false);
|
||
|
template<int n> explicit Mat_(const Vec<typename DataType<_Tp>::channel_type, n>& vec, bool copyData=true);
|
||
|
template<int m, int n> explicit Mat_(const Matx<typename DataType<_Tp>::channel_type, m, n>& mtx, bool copyData=true);
|
||
|
explicit Mat_(const Point_<typename DataType<_Tp>::channel_type>& pt, bool copyData=true);
|
||
|
explicit Mat_(const Point3_<typename DataType<_Tp>::channel_type>& pt, bool copyData=true);
|
||
|
explicit Mat_(const MatCommaInitializer_<_Tp>& commaInitializer);
|
||
|
|
||
|
Mat_(std::initializer_list<_Tp> values);
|
||
|
explicit Mat_(const std::initializer_list<int> sizes, const std::initializer_list<_Tp> values);
|
||
|
|
||
|
template <std::size_t _Nm> explicit Mat_(const std::array<_Tp, _Nm>& arr, bool copyData=false);
|
||
|
|
||
|
Mat_& operator = (const Mat& m);
|
||
|
Mat_& operator = (const Mat_& m);
|
||
|
//! set all the elements to s.
|
||
|
Mat_& operator = (const _Tp& s);
|
||
|
//! assign a matrix expression
|
||
|
Mat_& operator = (const MatExpr& e);
|
||
|
|
||
|
//! iterators; they are smart enough to skip gaps in the end of rows
|
||
|
iterator begin();
|
||
|
iterator end();
|
||
|
const_iterator begin() const;
|
||
|
const_iterator end() const;
|
||
|
|
||
|
//reverse iterators
|
||
|
std::reverse_iterator<iterator> rbegin();
|
||
|
std::reverse_iterator<iterator> rend();
|
||
|
std::reverse_iterator<const_iterator> rbegin() const;
|
||
|
std::reverse_iterator<const_iterator> rend() const;
|
||
|
|
||
|
//! template methods for operation over all matrix elements.
|
||
|
// the operations take care of skipping gaps in the end of rows (if any)
|
||
|
template<typename Functor> void forEach(const Functor& operation);
|
||
|
template<typename Functor> void forEach(const Functor& operation) const;
|
||
|
|
||
|
//! equivalent to Mat::create(_rows, _cols, DataType<_Tp>::type)
|
||
|
void create(int _rows, int _cols);
|
||
|
//! equivalent to Mat::create(_size, DataType<_Tp>::type)
|
||
|
void create(Size _size);
|
||
|
//! equivalent to Mat::create(_ndims, _sizes, DatType<_Tp>::type)
|
||
|
void create(int _ndims, const int* _sizes);
|
||
|
//! equivalent to Mat::release()
|
||
|
void release();
|
||
|
//! cross-product
|
||
|
Mat_ cross(const Mat_& m) const;
|
||
|
//! data type conversion
|
||
|
template<typename T2> operator Mat_<T2>() const;
|
||
|
//! overridden forms of Mat::row() etc.
|
||
|
Mat_ row(int y) const;
|
||
|
Mat_ col(int x) const;
|
||
|
Mat_ diag(int d=0) const;
|
||
|
CV_NODISCARD_STD Mat_ clone() const;
|
||
|
|
||
|
//! overridden forms of Mat::elemSize() etc.
|
||
|
size_t elemSize() const;
|
||
|
size_t elemSize1() const;
|
||
|
int type() const;
|
||
|
int depth() const;
|
||
|
int channels() const;
|
||
|
size_t step1(int i=0) const;
|
||
|
//! returns step()/sizeof(_Tp)
|
||
|
size_t stepT(int i=0) const;
|
||
|
|
||
|
//! overridden forms of Mat::zeros() etc. Data type is omitted, of course
|
||
|
CV_NODISCARD_STD static MatExpr zeros(int rows, int cols);
|
||
|
CV_NODISCARD_STD static MatExpr zeros(Size size);
|
||
|
CV_NODISCARD_STD static MatExpr zeros(int _ndims, const int* _sizes);
|
||
|
CV_NODISCARD_STD static MatExpr ones(int rows, int cols);
|
||
|
CV_NODISCARD_STD static MatExpr ones(Size size);
|
||
|
CV_NODISCARD_STD static MatExpr ones(int _ndims, const int* _sizes);
|
||
|
CV_NODISCARD_STD static MatExpr eye(int rows, int cols);
|
||
|
CV_NODISCARD_STD static MatExpr eye(Size size);
|
||
|
|
||
|
//! some more overridden methods
|
||
|
Mat_& adjustROI( int dtop, int dbottom, int dleft, int dright );
|
||
|
Mat_ operator()( const Range& rowRange, const Range& colRange ) const;
|
||
|
Mat_ operator()( const Rect& roi ) const;
|
||
|
Mat_ operator()( const Range* ranges ) const;
|
||
|
Mat_ operator()(const std::vector<Range>& ranges) const;
|
||
|
|
||
|
//! more convenient forms of row and element access operators
|
||
|
_Tp* operator [](int y);
|
||
|
const _Tp* operator [](int y) const;
|
||
|
|
||
|
//! returns reference to the specified element
|
||
|
_Tp& operator ()(const int* idx);
|
||
|
//! returns read-only reference to the specified element
|
||
|
const _Tp& operator ()(const int* idx) const;
|
||
|
|
||
|
//! returns reference to the specified element
|
||
|
template<int n> _Tp& operator ()(const Vec<int, n>& idx);
|
||
|
//! returns read-only reference to the specified element
|
||
|
template<int n> const _Tp& operator ()(const Vec<int, n>& idx) const;
|
||
|
|
||
|
//! returns reference to the specified element (1D case)
|
||
|
_Tp& operator ()(int idx0);
|
||
|
//! returns read-only reference to the specified element (1D case)
|
||
|
const _Tp& operator ()(int idx0) const;
|
||
|
//! returns reference to the specified element (2D case)
|
||
|
_Tp& operator ()(int row, int col);
|
||
|
//! returns read-only reference to the specified element (2D case)
|
||
|
const _Tp& operator ()(int row, int col) const;
|
||
|
//! returns reference to the specified element (3D case)
|
||
|
_Tp& operator ()(int idx0, int idx1, int idx2);
|
||
|
//! returns read-only reference to the specified element (3D case)
|
||
|
const _Tp& operator ()(int idx0, int idx1, int idx2) const;
|
||
|
|
||
|
_Tp& operator ()(Point pt);
|
||
|
const _Tp& operator ()(Point pt) const;
|
||
|
|
||
|
//! conversion to vector.
|
||
|
operator std::vector<_Tp>() const;
|
||
|
|
||
|
//! conversion to array.
|
||
|
template<std::size_t _Nm> operator std::array<_Tp, _Nm>() const;
|
||
|
|
||
|
//! conversion to Vec
|
||
|
template<int n> operator Vec<typename DataType<_Tp>::channel_type, n>() const;
|
||
|
//! conversion to Matx
|
||
|
template<int m, int n> operator Matx<typename DataType<_Tp>::channel_type, m, n>() const;
|
||
|
|
||
|
Mat_(Mat_&& m);
|
||
|
Mat_& operator = (Mat_&& m);
|
||
|
|
||
|
Mat_(Mat&& m);
|
||
|
Mat_& operator = (Mat&& m);
|
||
|
|
||
|
Mat_(MatExpr&& e);
|
||
|
};
|
||
|
|
||
|
typedef Mat_<uchar> Mat1b;
|
||
|
typedef Mat_<Vec2b> Mat2b;
|
||
|
typedef Mat_<Vec3b> Mat3b;
|
||
|
typedef Mat_<Vec4b> Mat4b;
|
||
|
|
||
|
typedef Mat_<short> Mat1s;
|
||
|
typedef Mat_<Vec2s> Mat2s;
|
||
|
typedef Mat_<Vec3s> Mat3s;
|
||
|
typedef Mat_<Vec4s> Mat4s;
|
||
|
|
||
|
typedef Mat_<ushort> Mat1w;
|
||
|
typedef Mat_<Vec2w> Mat2w;
|
||
|
typedef Mat_<Vec3w> Mat3w;
|
||
|
typedef Mat_<Vec4w> Mat4w;
|
||
|
|
||
|
typedef Mat_<int> Mat1i;
|
||
|
typedef Mat_<Vec2i> Mat2i;
|
||
|
typedef Mat_<Vec3i> Mat3i;
|
||
|
typedef Mat_<Vec4i> Mat4i;
|
||
|
|
||
|
typedef Mat_<float> Mat1f;
|
||
|
typedef Mat_<Vec2f> Mat2f;
|
||
|
typedef Mat_<Vec3f> Mat3f;
|
||
|
typedef Mat_<Vec4f> Mat4f;
|
||
|
|
||
|
typedef Mat_<double> Mat1d;
|
||
|
typedef Mat_<Vec2d> Mat2d;
|
||
|
typedef Mat_<Vec3d> Mat3d;
|
||
|
typedef Mat_<Vec4d> Mat4d;
|
||
|
|
||
|
/** @todo document */
|
||
|
class CV_EXPORTS UMat
|
||
|
{
|
||
|
public:
|
||
|
//! default constructor
|
||
|
UMat(UMatUsageFlags usageFlags = USAGE_DEFAULT) CV_NOEXCEPT;
|
||
|
//! constructs 2D matrix of the specified size and type
|
||
|
// (_type is CV_8UC1, CV_64FC3, CV_32SC(12) etc.)
|
||
|
UMat(int rows, int cols, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT);
|
||
|
UMat(Size size, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT);
|
||
|
//! constructs 2D matrix and fills it with the specified value _s.
|
||
|
UMat(int rows, int cols, int type, const Scalar& s, UMatUsageFlags usageFlags = USAGE_DEFAULT);
|
||
|
UMat(Size size, int type, const Scalar& s, UMatUsageFlags usageFlags = USAGE_DEFAULT);
|
||
|
|
||
|
//! constructs n-dimensional matrix
|
||
|
UMat(int ndims, const int* sizes, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT);
|
||
|
UMat(int ndims, const int* sizes, int type, const Scalar& s, UMatUsageFlags usageFlags = USAGE_DEFAULT);
|
||
|
|
||
|
//! copy constructor
|
||
|
UMat(const UMat& m);
|
||
|
|
||
|
//! creates a matrix header for a part of the bigger matrix
|
||
|
UMat(const UMat& m, const Range& rowRange, const Range& colRange=Range::all());
|
||
|
UMat(const UMat& m, const Rect& roi);
|
||
|
UMat(const UMat& m, const Range* ranges);
|
||
|
UMat(const UMat& m, const std::vector<Range>& ranges);
|
||
|
|
||
|
// FIXIT copyData=false is not implemented, drop this in favor of cv::Mat (OpenCV 5.0)
|
||
|
//! builds matrix from std::vector with or without copying the data
|
||
|
template<typename _Tp> explicit UMat(const std::vector<_Tp>& vec, bool copyData=false);
|
||
|
|
||
|
//! destructor - calls release()
|
||
|
~UMat();
|
||
|
//! assignment operators
|
||
|
UMat& operator = (const UMat& m);
|
||
|
|
||
|
Mat getMat(AccessFlag flags) const;
|
||
|
|
||
|
//! returns a new matrix header for the specified row
|
||
|
UMat row(int y) const;
|
||
|
//! returns a new matrix header for the specified column
|
||
|
UMat col(int x) const;
|
||
|
//! ... for the specified row span
|
||
|
UMat rowRange(int startrow, int endrow) const;
|
||
|
UMat rowRange(const Range& r) const;
|
||
|
//! ... for the specified column span
|
||
|
UMat colRange(int startcol, int endcol) const;
|
||
|
UMat colRange(const Range& r) const;
|
||
|
//! ... for the specified diagonal
|
||
|
//! (d=0 - the main diagonal,
|
||
|
//! >0 - a diagonal from the upper half,
|
||
|
//! <0 - a diagonal from the lower half)
|
||
|
UMat diag(int d=0) const;
|
||
|
//! constructs a square diagonal matrix which main diagonal is vector "d"
|
||
|
CV_NODISCARD_STD static UMat diag(const UMat& d, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/);
|
||
|
CV_NODISCARD_STD static UMat diag(const UMat& d) { return diag(d, USAGE_DEFAULT); } // OpenCV 5.0: remove abi compatibility overload
|
||
|
|
||
|
//! returns deep copy of the matrix, i.e. the data is copied
|
||
|
CV_NODISCARD_STD UMat clone() const;
|
||
|
//! copies the matrix content to "m".
|
||
|
// It calls m.create(this->size(), this->type()).
|
||
|
void copyTo( OutputArray m ) const;
|
||
|
//! copies those matrix elements to "m" that are marked with non-zero mask elements.
|
||
|
void copyTo( OutputArray m, InputArray mask ) const;
|
||
|
//! converts matrix to another datatype with optional scaling. See cvConvertScale.
|
||
|
void convertTo( OutputArray m, int rtype, double alpha=1, double beta=0 ) const;
|
||
|
|
||
|
void assignTo( UMat& m, int type=-1 ) const;
|
||
|
|
||
|
//! sets every matrix element to s
|
||
|
UMat& operator = (const Scalar& s);
|
||
|
//! sets some of the matrix elements to s, according to the mask
|
||
|
UMat& setTo(InputArray value, InputArray mask=noArray());
|
||
|
//! creates alternative matrix header for the same data, with different
|
||
|
// number of channels and/or different number of rows. see cvReshape.
|
||
|
UMat reshape(int cn, int rows=0) const;
|
||
|
UMat reshape(int cn, int newndims, const int* newsz) const;
|
||
|
|
||
|
//! matrix transposition by means of matrix expressions
|
||
|
UMat t() const;
|
||
|
//! matrix inversion by means of matrix expressions
|
||
|
UMat inv(int method=DECOMP_LU) const;
|
||
|
//! per-element matrix multiplication by means of matrix expressions
|
||
|
UMat mul(InputArray m, double scale=1) const;
|
||
|
|
||
|
//! computes dot-product
|
||
|
double dot(InputArray m) const;
|
||
|
|
||
|
//! Matlab-style matrix initialization
|
||
|
CV_NODISCARD_STD static UMat zeros(int rows, int cols, int type, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/);
|
||
|
CV_NODISCARD_STD static UMat zeros(Size size, int type, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/);
|
||
|
CV_NODISCARD_STD static UMat zeros(int ndims, const int* sz, int type, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/);
|
||
|
CV_NODISCARD_STD static UMat zeros(int rows, int cols, int type) { return zeros(rows, cols, type, USAGE_DEFAULT); } // OpenCV 5.0: remove abi compatibility overload
|
||
|
CV_NODISCARD_STD static UMat zeros(Size size, int type) { return zeros(size, type, USAGE_DEFAULT); } // OpenCV 5.0: remove abi compatibility overload
|
||
|
CV_NODISCARD_STD static UMat zeros(int ndims, const int* sz, int type) { return zeros(ndims, sz, type, USAGE_DEFAULT); } // OpenCV 5.0: remove abi compatibility overload
|
||
|
CV_NODISCARD_STD static UMat ones(int rows, int cols, int type, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/);
|
||
|
CV_NODISCARD_STD static UMat ones(Size size, int type, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/);
|
||
|
CV_NODISCARD_STD static UMat ones(int ndims, const int* sz, int type, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/);
|
||
|
CV_NODISCARD_STD static UMat ones(int rows, int cols, int type) { return ones(rows, cols, type, USAGE_DEFAULT); } // OpenCV 5.0: remove abi compatibility overload
|
||
|
CV_NODISCARD_STD static UMat ones(Size size, int type) { return ones(size, type, USAGE_DEFAULT); } // OpenCV 5.0: remove abi compatibility overload
|
||
|
CV_NODISCARD_STD static UMat ones(int ndims, const int* sz, int type) { return ones(ndims, sz, type, USAGE_DEFAULT); } // OpenCV 5.0: remove abi compatibility overload
|
||
|
CV_NODISCARD_STD static UMat eye(int rows, int cols, int type, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/);
|
||
|
CV_NODISCARD_STD static UMat eye(Size size, int type, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/);
|
||
|
CV_NODISCARD_STD static UMat eye(int rows, int cols, int type) { return eye(rows, cols, type, USAGE_DEFAULT); } // OpenCV 5.0: remove abi compatibility overload
|
||
|
CV_NODISCARD_STD static UMat eye(Size size, int type) { return eye(size, type, USAGE_DEFAULT); } // OpenCV 5.0: remove abi compatibility overload
|
||
|
|
||
|
//! allocates new matrix data unless the matrix already has specified size and type.
|
||
|
// previous data is unreferenced if needed.
|
||
|
void create(int rows, int cols, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT);
|
||
|
void create(Size size, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT);
|
||
|
void create(int ndims, const int* sizes, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT);
|
||
|
void create(const std::vector<int>& sizes, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT);
|
||
|
|
||
|
//! increases the reference counter; use with care to avoid memleaks
|
||
|
void addref();
|
||
|
//! decreases reference counter;
|
||
|
// deallocates the data when reference counter reaches 0.
|
||
|
void release();
|
||
|
|
||
|
//! deallocates the matrix data
|
||
|
void deallocate();
|
||
|
//! internal use function; properly re-allocates _size, _step arrays
|
||
|
void copySize(const UMat& m);
|
||
|
|
||
|
//! locates matrix header within a parent matrix. See below
|
||
|
void locateROI( Size& wholeSize, Point& ofs ) const;
|
||
|
//! moves/resizes the current matrix ROI inside the parent matrix.
|
||
|
UMat& adjustROI( int dtop, int dbottom, int dleft, int dright );
|
||
|
//! extracts a rectangular sub-matrix
|
||
|
// (this is a generalized form of row, rowRange etc.)
|
||
|
UMat operator()( Range rowRange, Range colRange ) const;
|
||
|
UMat operator()( const Rect& roi ) const;
|
||
|
UMat operator()( const Range* ranges ) const;
|
||
|
UMat operator()(const std::vector<Range>& ranges) const;
|
||
|
|
||
|
//! returns true iff the matrix data is continuous
|
||
|
// (i.e. when there are no gaps between successive rows).
|
||
|
// similar to CV_IS_MAT_CONT(cvmat->type)
|
||
|
bool isContinuous() const;
|
||
|
|
||
|
//! returns true if the matrix is a submatrix of another matrix
|
||
|
bool isSubmatrix() const;
|
||
|
|
||
|
//! returns element size in bytes,
|
||
|
// similar to CV_ELEM_SIZE(cvmat->type)
|
||
|
size_t elemSize() const;
|
||
|
//! returns the size of element channel in bytes.
|
||
|
size_t elemSize1() const;
|
||
|
//! returns element type, similar to CV_MAT_TYPE(cvmat->type)
|
||
|
int type() const;
|
||
|
//! returns element type, similar to CV_MAT_DEPTH(cvmat->type)
|
||
|
int depth() const;
|
||
|
//! returns element type, similar to CV_MAT_CN(cvmat->type)
|
||
|
int channels() const;
|
||
|
//! returns step/elemSize1()
|
||
|
size_t step1(int i=0) const;
|
||
|
//! returns true if matrix data is NULL
|
||
|
bool empty() const;
|
||
|
//! returns the total number of matrix elements
|
||
|
size_t total() const;
|
||
|
|
||
|
//! returns N if the matrix is 1-channel (N x ptdim) or ptdim-channel (1 x N) or (N x 1); negative number otherwise
|
||
|
int checkVector(int elemChannels, int depth=-1, bool requireContinuous=true) const;
|
||
|
|
||
|
UMat(UMat&& m);
|
||
|
UMat& operator = (UMat&& m);
|
||
|
|
||
|
/*! Returns the OpenCL buffer handle on which UMat operates on.
|
||
|
The UMat instance should be kept alive during the use of the handle to prevent the buffer to be
|
||
|
returned to the OpenCV buffer pool.
|
||
|
*/
|
||
|
void* handle(AccessFlag accessFlags) const;
|
||
|
void ndoffset(size_t* ofs) const;
|
||
|
|
||
|
enum { MAGIC_VAL = 0x42FF0000, AUTO_STEP = 0, CONTINUOUS_FLAG = CV_MAT_CONT_FLAG, SUBMATRIX_FLAG = CV_SUBMAT_FLAG };
|
||
|
enum { MAGIC_MASK = 0xFFFF0000, TYPE_MASK = 0x00000FFF, DEPTH_MASK = 7 };
|
||
|
|
||
|
/*! includes several bit-fields:
|
||
|
- the magic signature
|
||
|
- continuity flag
|
||
|
- depth
|
||
|
- number of channels
|
||
|
*/
|
||
|
int flags;
|
||
|
|
||
|
//! the matrix dimensionality, >= 2
|
||
|
int dims;
|
||
|
|
||
|
//! number of rows in the matrix; -1 when the matrix has more than 2 dimensions
|
||
|
int rows;
|
||
|
|
||
|
//! number of columns in the matrix; -1 when the matrix has more than 2 dimensions
|
||
|
int cols;
|
||
|
|
||
|
//! custom allocator
|
||
|
MatAllocator* allocator;
|
||
|
|
||
|
//! usage flags for allocator; recommend do not set directly, instead set during construct/create/getUMat
|
||
|
UMatUsageFlags usageFlags;
|
||
|
|
||
|
//! and the standard allocator
|
||
|
static MatAllocator* getStdAllocator();
|
||
|
|
||
|
//! internal use method: updates the continuity flag
|
||
|
void updateContinuityFlag();
|
||
|
|
||
|
//! black-box container of UMat data
|
||
|
UMatData* u;
|
||
|
|
||
|
//! offset of the submatrix (or 0)
|
||
|
size_t offset;
|
||
|
|
||
|
//! dimensional size of the matrix; accessible in various formats
|
||
|
MatSize size;
|
||
|
|
||
|
//! number of bytes each matrix element/row/plane/dimension occupies
|
||
|
MatStep step;
|
||
|
|
||
|
protected:
|
||
|
};
|
||
|
|
||
|
|
||
|
/////////////////////////// multi-dimensional sparse matrix //////////////////////////
|
||
|
|
||
|
/** @brief The class SparseMat represents multi-dimensional sparse numerical arrays.
|
||
|
|
||
|
Such a sparse array can store elements of any type that Mat can store. *Sparse* means that only
|
||
|
non-zero elements are stored (though, as a result of operations on a sparse matrix, some of its
|
||
|
stored elements can actually become 0. It is up to you to detect such elements and delete them
|
||
|
using SparseMat::erase ). The non-zero elements are stored in a hash table that grows when it is
|
||
|
filled so that the search time is O(1) in average (regardless of whether element is there or not).
|
||
|
Elements can be accessed using the following methods:
|
||
|
- Query operations (SparseMat::ptr and the higher-level SparseMat::ref, SparseMat::value and
|
||
|
SparseMat::find), for example:
|
||
|
@code
|
||
|
const int dims = 5;
|
||
|
int size[5] = {10, 10, 10, 10, 10};
|
||
|
SparseMat sparse_mat(dims, size, CV_32F);
|
||
|
for(int i = 0; i < 1000; i++)
|
||
|
{
|
||
|
int idx[dims];
|
||
|
for(int k = 0; k < dims; k++)
|
||
|
idx[k] = rand() % size[k];
|
||
|
sparse_mat.ref<float>(idx) += 1.f;
|
||
|
}
|
||
|
cout << "nnz = " << sparse_mat.nzcount() << endl;
|
||
|
@endcode
|
||
|
- Sparse matrix iterators. They are similar to MatIterator but different from NAryMatIterator.
|
||
|
That is, the iteration loop is familiar to STL users:
|
||
|
@code
|
||
|
// prints elements of a sparse floating-point matrix
|
||
|
// and the sum of elements.
|
||
|
SparseMatConstIterator_<float>
|
||
|
it = sparse_mat.begin<float>(),
|
||
|
it_end = sparse_mat.end<float>();
|
||
|
double s = 0;
|
||
|
int dims = sparse_mat.dims();
|
||
|
for(; it != it_end; ++it)
|
||
|
{
|
||
|
// print element indices and the element value
|
||
|
const SparseMat::Node* n = it.node();
|
||
|
printf("(");
|
||
|
for(int i = 0; i < dims; i++)
|
||
|
printf("%d%s", n->idx[i], i < dims-1 ? ", " : ")");
|
||
|
printf(": %g\n", it.value<float>());
|
||
|
s += *it;
|
||
|
}
|
||
|
printf("Element sum is %g\n", s);
|
||
|
@endcode
|
||
|
If you run this loop, you will notice that elements are not enumerated in a logical order
|
||
|
(lexicographical, and so on). They come in the same order as they are stored in the hash table
|
||
|
(semi-randomly). You may collect pointers to the nodes and sort them to get the proper ordering.
|
||
|
Note, however, that pointers to the nodes may become invalid when you add more elements to the
|
||
|
matrix. This may happen due to possible buffer reallocation.
|
||
|
- Combination of the above 2 methods when you need to process 2 or more sparse matrices
|
||
|
simultaneously. For example, this is how you can compute unnormalized cross-correlation of the 2
|
||
|
floating-point sparse matrices:
|
||
|
@code
|
||
|
double cross_corr(const SparseMat& a, const SparseMat& b)
|
||
|
{
|
||
|
const SparseMat *_a = &a, *_b = &b;
|
||
|
// if b contains less elements than a,
|
||
|
// it is faster to iterate through b
|
||
|
if(_a->nzcount() > _b->nzcount())
|
||
|
std::swap(_a, _b);
|
||
|
SparseMatConstIterator_<float> it = _a->begin<float>(),
|
||
|
it_end = _a->end<float>();
|
||
|
double ccorr = 0;
|
||
|
for(; it != it_end; ++it)
|
||
|
{
|
||
|
// take the next element from the first matrix
|
||
|
float avalue = *it;
|
||
|
const Node* anode = it.node();
|
||
|
// and try to find an element with the same index in the second matrix.
|
||
|
// since the hash value depends only on the element index,
|
||
|
// reuse the hash value stored in the node
|
||
|
float bvalue = _b->value<float>(anode->idx,&anode->hashval);
|
||
|
ccorr += avalue*bvalue;
|
||
|
}
|
||
|
return ccorr;
|
||
|
}
|
||
|
@endcode
|
||
|
*/
|
||
|
class CV_EXPORTS SparseMat
|
||
|
{
|
||
|
public:
|
||
|
typedef SparseMatIterator iterator;
|
||
|
typedef SparseMatConstIterator const_iterator;
|
||
|
|
||
|
enum { MAGIC_VAL=0x42FD0000, MAX_DIM=32, HASH_SCALE=0x5bd1e995, HASH_BIT=0x80000000 };
|
||
|
|
||
|
//! the sparse matrix header
|
||
|
struct CV_EXPORTS Hdr
|
||
|
{
|
||
|
Hdr(int _dims, const int* _sizes, int _type);
|
||
|
void clear();
|
||
|
int refcount;
|
||
|
int dims;
|
||
|
int valueOffset;
|
||
|
size_t nodeSize;
|
||
|
size_t nodeCount;
|
||
|
size_t freeList;
|
||
|
std::vector<uchar> pool;
|
||
|
std::vector<size_t> hashtab;
|
||
|
int size[MAX_DIM];
|
||
|
};
|
||
|
|
||
|
//! sparse matrix node - element of a hash table
|
||
|
struct CV_EXPORTS Node
|
||
|
{
|
||
|
//! hash value
|
||
|
size_t hashval;
|
||
|
//! index of the next node in the same hash table entry
|
||
|
size_t next;
|
||
|
//! index of the matrix element
|
||
|
int idx[MAX_DIM];
|
||
|
};
|
||
|
|
||
|
/** @brief Various SparseMat constructors.
|
||
|
*/
|
||
|
SparseMat();
|
||
|
|
||
|
/** @overload
|
||
|
@param dims Array dimensionality.
|
||
|
@param _sizes Sparce matrix size on all dementions.
|
||
|
@param _type Sparse matrix data type.
|
||
|
*/
|
||
|
SparseMat(int dims, const int* _sizes, int _type);
|
||
|
|
||
|
/** @overload
|
||
|
@param m Source matrix for copy constructor. If m is dense matrix (ocvMat) then it will be converted
|
||
|
to sparse representation.
|
||
|
*/
|
||
|
SparseMat(const SparseMat& m);
|
||
|
|
||
|
/** @overload
|
||
|
@param m Source matrix for copy constructor. If m is dense matrix (ocvMat) then it will be converted
|
||
|
to sparse representation.
|
||
|
*/
|
||
|
explicit SparseMat(const Mat& m);
|
||
|
|
||
|
//! the destructor
|
||
|
~SparseMat();
|
||
|
|
||
|
//! assignment operator. This is O(1) operation, i.e. no data is copied
|
||
|
SparseMat& operator = (const SparseMat& m);
|
||
|
//! equivalent to the corresponding constructor
|
||
|
SparseMat& operator = (const Mat& m);
|
||
|
|
||
|
//! creates full copy of the matrix
|
||
|
CV_NODISCARD_STD SparseMat clone() const;
|
||
|
|
||
|
//! copies all the data to the destination matrix. All the previous content of m is erased
|
||
|
void copyTo( SparseMat& m ) const;
|
||
|
//! converts sparse matrix to dense matrix.
|
||
|
void copyTo( Mat& m ) const;
|
||
|
//! multiplies all the matrix elements by the specified scale factor alpha and converts the results to the specified data type
|
||
|
void convertTo( SparseMat& m, int rtype, double alpha=1 ) const;
|
||
|
//! converts sparse matrix to dense n-dim matrix with optional type conversion and scaling.
|
||
|
/*!
|
||
|
@param [out] m - output matrix; if it does not have a proper size or type before the operation,
|
||
|
it is reallocated
|
||
|
@param [in] rtype - desired output matrix type or, rather, the depth since the number of channels
|
||
|
are the same as the input has; if rtype is negative, the output matrix will have the
|
||
|
same type as the input.
|
||
|
@param [in] alpha - optional scale factor
|
||
|
@param [in] beta - optional delta added to the scaled values
|
||
|
*/
|
||
|
void convertTo( Mat& m, int rtype, double alpha=1, double beta=0 ) const;
|
||
|
|
||
|
// not used now
|
||
|
void assignTo( SparseMat& m, int type=-1 ) const;
|
||
|
|
||
|
//! reallocates sparse matrix.
|
||
|
/*!
|
||
|
If the matrix already had the proper size and type,
|
||
|
it is simply cleared with clear(), otherwise,
|
||
|
the old matrix is released (using release()) and the new one is allocated.
|
||
|
*/
|
||
|
void create(int dims, const int* _sizes, int _type);
|
||
|
//! sets all the sparse matrix elements to 0, which means clearing the hash table.
|
||
|
void clear();
|
||
|
//! manually increments the reference counter to the header.
|
||
|
void addref();
|
||
|
// decrements the header reference counter. When the counter reaches 0, the header and all the underlying data are deallocated.
|
||
|
void release();
|
||
|
|
||
|
//! converts sparse matrix to the old-style representation; all the elements are copied.
|
||
|
//operator CvSparseMat*() const;
|
||
|
//! returns the size of each element in bytes (not including the overhead - the space occupied by SparseMat::Node elements)
|
||
|
size_t elemSize() const;
|
||
|
//! returns elemSize()/channels()
|
||
|
size_t elemSize1() const;
|
||
|
|
||
|
//! returns type of sparse matrix elements
|
||
|
int type() const;
|
||
|
//! returns the depth of sparse matrix elements
|
||
|
int depth() const;
|
||
|
//! returns the number of channels
|
||
|
int channels() const;
|
||
|
|
||
|
//! returns the array of sizes, or NULL if the matrix is not allocated
|
||
|
const int* size() const;
|
||
|
//! returns the size of i-th matrix dimension (or 0)
|
||
|
int size(int i) const;
|
||
|
//! returns the matrix dimensionality
|
||
|
int dims() const;
|
||
|
//! returns the number of non-zero elements (=the number of hash table nodes)
|
||
|
size_t nzcount() const;
|
||
|
|
||
|
//! computes the element hash value (1D case)
|
||
|
size_t hash(int i0) const;
|
||
|
//! computes the element hash value (2D case)
|
||
|
size_t hash(int i0, int i1) const;
|
||
|
//! computes the element hash value (3D case)
|
||
|
size_t hash(int i0, int i1, int i2) const;
|
||
|
//! computes the element hash value (nD case)
|
||
|
size_t hash(const int* idx) const;
|
||
|
|
||
|
//!@{
|
||
|
/*!
|
||
|
specialized variants for 1D, 2D, 3D cases and the generic_type one for n-D case.
|
||
|
return pointer to the matrix element.
|
||
|
- if the element is there (it's non-zero), the pointer to it is returned
|
||
|
- if it's not there and createMissing=false, NULL pointer is returned
|
||
|
- if it's not there and createMissing=true, then the new element
|
||
|
is created and initialized with 0. Pointer to it is returned
|
||
|
- if the optional hashval pointer is not NULL, the element hash value is
|
||
|
not computed, but *hashval is taken instead.
|
||
|
*/
|
||
|
//! returns pointer to the specified element (1D case)
|
||
|
uchar* ptr(int i0, bool createMissing, size_t* hashval=0);
|
||
|
//! returns pointer to the specified element (2D case)
|
||
|
uchar* ptr(int i0, int i1, bool createMissing, size_t* hashval=0);
|
||
|
//! returns pointer to the specified element (3D case)
|
||
|
uchar* ptr(int i0, int i1, int i2, bool createMissing, size_t* hashval=0);
|
||
|
//! returns pointer to the specified element (nD case)
|
||
|
uchar* ptr(const int* idx, bool createMissing, size_t* hashval=0);
|
||
|
//!@}
|
||
|
|
||
|
//!@{
|
||
|
/*!
|
||
|
return read-write reference to the specified sparse matrix element.
|
||
|
|
||
|
`ref<_Tp>(i0,...[,hashval])` is equivalent to `*(_Tp*)ptr(i0,...,true[,hashval])`.
|
||
|
The methods always return a valid reference.
|
||
|
If the element did not exist, it is created and initialized with 0.
|
||
|
*/
|
||
|
//! returns reference to the specified element (1D case)
|
||
|
template<typename _Tp> _Tp& ref(int i0, size_t* hashval=0);
|
||
|
//! returns reference to the specified element (2D case)
|
||
|
template<typename _Tp> _Tp& ref(int i0, int i1, size_t* hashval=0);
|
||
|
//! returns reference to the specified element (3D case)
|
||
|
template<typename _Tp> _Tp& ref(int i0, int i1, int i2, size_t* hashval=0);
|
||
|
//! returns reference to the specified element (nD case)
|
||
|
template<typename _Tp> _Tp& ref(const int* idx, size_t* hashval=0);
|
||
|
//!@}
|
||
|
|
||
|
//!@{
|
||
|
/*!
|
||
|
return value of the specified sparse matrix element.
|
||
|
|
||
|
`value<_Tp>(i0,...[,hashval])` is equivalent to
|
||
|
@code
|
||
|
{ const _Tp* p = find<_Tp>(i0,...[,hashval]); return p ? *p : _Tp(); }
|
||
|
@endcode
|
||
|
|
||
|
That is, if the element did not exist, the methods return 0.
|
||
|
*/
|
||
|
//! returns value of the specified element (1D case)
|
||
|
template<typename _Tp> _Tp value(int i0, size_t* hashval=0) const;
|
||
|
//! returns value of the specified element (2D case)
|
||
|
template<typename _Tp> _Tp value(int i0, int i1, size_t* hashval=0) const;
|
||
|
//! returns value of the specified element (3D case)
|
||
|
template<typename _Tp> _Tp value(int i0, int i1, int i2, size_t* hashval=0) const;
|
||
|
//! returns value of the specified element (nD case)
|
||
|
template<typename _Tp> _Tp value(const int* idx, size_t* hashval=0) const;
|
||
|
//!@}
|
||
|
|
||
|
//!@{
|
||
|
/*!
|
||
|
Return pointer to the specified sparse matrix element if it exists
|
||
|
|
||
|
`find<_Tp>(i0,...[,hashval])` is equivalent to `(_const Tp*)ptr(i0,...false[,hashval])`.
|
||
|
|
||
|
If the specified element does not exist, the methods return NULL.
|
||
|
*/
|
||
|
//! returns pointer to the specified element (1D case)
|
||
|
template<typename _Tp> const _Tp* find(int i0, size_t* hashval=0) const;
|
||
|
//! returns pointer to the specified element (2D case)
|
||
|
template<typename _Tp> const _Tp* find(int i0, int i1, size_t* hashval=0) const;
|
||
|
//! returns pointer to the specified element (3D case)
|
||
|
template<typename _Tp> const _Tp* find(int i0, int i1, int i2, size_t* hashval=0) const;
|
||
|
//! returns pointer to the specified element (nD case)
|
||
|
template<typename _Tp> const _Tp* find(const int* idx, size_t* hashval=0) const;
|
||
|
//!@}
|
||
|
|
||
|
//! erases the specified element (2D case)
|
||
|
void erase(int i0, int i1, size_t* hashval=0);
|
||
|
//! erases the specified element (3D case)
|
||
|
void erase(int i0, int i1, int i2, size_t* hashval=0);
|
||
|
//! erases the specified element (nD case)
|
||
|
void erase(const int* idx, size_t* hashval=0);
|
||
|
|
||
|
//!@{
|
||
|
/*!
|
||
|
return the sparse matrix iterator pointing to the first sparse matrix element
|
||
|
*/
|
||
|
//! returns the sparse matrix iterator at the matrix beginning
|
||
|
SparseMatIterator begin();
|
||
|
//! returns the sparse matrix iterator at the matrix beginning
|
||
|
template<typename _Tp> SparseMatIterator_<_Tp> begin();
|
||
|
//! returns the read-only sparse matrix iterator at the matrix beginning
|
||
|
SparseMatConstIterator begin() const;
|
||
|
//! returns the read-only sparse matrix iterator at the matrix beginning
|
||
|
template<typename _Tp> SparseMatConstIterator_<_Tp> begin() const;
|
||
|
//!@}
|
||
|
/*!
|
||
|
return the sparse matrix iterator pointing to the element following the last sparse matrix element
|
||
|
*/
|
||
|
//! returns the sparse matrix iterator at the matrix end
|
||
|
SparseMatIterator end();
|
||
|
//! returns the read-only sparse matrix iterator at the matrix end
|
||
|
SparseMatConstIterator end() const;
|
||
|
//! returns the typed sparse matrix iterator at the matrix end
|
||
|
template<typename _Tp> SparseMatIterator_<_Tp> end();
|
||
|
//! returns the typed read-only sparse matrix iterator at the matrix end
|
||
|
template<typename _Tp> SparseMatConstIterator_<_Tp> end() const;
|
||
|
|
||
|
//! returns the value stored in the sparse martix node
|
||
|
template<typename _Tp> _Tp& value(Node* n);
|
||
|
//! returns the value stored in the sparse martix node
|
||
|
template<typename _Tp> const _Tp& value(const Node* n) const;
|
||
|
|
||
|
////////////// some internal-use methods ///////////////
|
||
|
Node* node(size_t nidx);
|
||
|
const Node* node(size_t nidx) const;
|
||
|
|
||
|
uchar* newNode(const int* idx, size_t hashval);
|
||
|
void removeNode(size_t hidx, size_t nidx, size_t previdx);
|
||
|
void resizeHashTab(size_t newsize);
|
||
|
|
||
|
int flags;
|
||
|
Hdr* hdr;
|
||
|
};
|
||
|
|
||
|
|
||
|
|
||
|
///////////////////////////////// SparseMat_<_Tp> ////////////////////////////////////
|
||
|
|
||
|
/** @brief Template sparse n-dimensional array class derived from SparseMat
|
||
|
|
||
|
SparseMat_ is a thin wrapper on top of SparseMat created in the same way as Mat_ . It simplifies
|
||
|
notation of some operations:
|
||
|
@code
|
||
|
int sz[] = {10, 20, 30};
|
||
|
SparseMat_<double> M(3, sz);
|
||
|
...
|
||
|
M.ref(1, 2, 3) = M(4, 5, 6) + M(7, 8, 9);
|
||
|
@endcode
|
||
|
*/
|
||
|
template<typename _Tp> class SparseMat_ : public SparseMat
|
||
|
{
|
||
|
public:
|
||
|
typedef SparseMatIterator_<_Tp> iterator;
|
||
|
typedef SparseMatConstIterator_<_Tp> const_iterator;
|
||
|
|
||
|
//! the default constructor
|
||
|
SparseMat_();
|
||
|
//! the full constructor equivalent to SparseMat(dims, _sizes, DataType<_Tp>::type)
|
||
|
SparseMat_(int dims, const int* _sizes);
|
||
|
//! the copy constructor. If DataType<_Tp>.type != m.type(), the m elements are converted
|
||
|
SparseMat_(const SparseMat& m);
|
||
|
//! the copy constructor. This is O(1) operation - no data is copied
|
||
|
SparseMat_(const SparseMat_& m);
|
||
|
//! converts dense matrix to the sparse form
|
||
|
SparseMat_(const Mat& m);
|
||
|
//! converts the old-style sparse matrix to the C++ class. All the elements are copied
|
||
|
//SparseMat_(const CvSparseMat* m);
|
||
|
//! the assignment operator. If DataType<_Tp>.type != m.type(), the m elements are converted
|
||
|
SparseMat_& operator = (const SparseMat& m);
|
||
|
//! the assignment operator. This is O(1) operation - no data is copied
|
||
|
SparseMat_& operator = (const SparseMat_& m);
|
||
|
//! converts dense matrix to the sparse form
|
||
|
SparseMat_& operator = (const Mat& m);
|
||
|
|
||
|
//! makes full copy of the matrix. All the elements are duplicated
|
||
|
CV_NODISCARD_STD SparseMat_ clone() const;
|
||
|
//! equivalent to cv::SparseMat::create(dims, _sizes, DataType<_Tp>::type)
|
||
|
void create(int dims, const int* _sizes);
|
||
|
//! converts sparse matrix to the old-style CvSparseMat. All the elements are copied
|
||
|
//operator CvSparseMat*() const;
|
||
|
|
||
|
//! returns type of the matrix elements
|
||
|
int type() const;
|
||
|
//! returns depth of the matrix elements
|
||
|
int depth() const;
|
||
|
//! returns the number of channels in each matrix element
|
||
|
int channels() const;
|
||
|
|
||
|
//! equivalent to SparseMat::ref<_Tp>(i0, hashval)
|
||
|
_Tp& ref(int i0, size_t* hashval=0);
|
||
|
//! equivalent to SparseMat::ref<_Tp>(i0, i1, hashval)
|
||
|
_Tp& ref(int i0, int i1, size_t* hashval=0);
|
||
|
//! equivalent to SparseMat::ref<_Tp>(i0, i1, i2, hashval)
|
||
|
_Tp& ref(int i0, int i1, int i2, size_t* hashval=0);
|
||
|
//! equivalent to SparseMat::ref<_Tp>(idx, hashval)
|
||
|
_Tp& ref(const int* idx, size_t* hashval=0);
|
||
|
|
||
|
//! equivalent to SparseMat::value<_Tp>(i0, hashval)
|
||
|
_Tp operator()(int i0, size_t* hashval=0) const;
|
||
|
//! equivalent to SparseMat::value<_Tp>(i0, i1, hashval)
|
||
|
_Tp operator()(int i0, int i1, size_t* hashval=0) const;
|
||
|
//! equivalent to SparseMat::value<_Tp>(i0, i1, i2, hashval)
|
||
|
_Tp operator()(int i0, int i1, int i2, size_t* hashval=0) const;
|
||
|
//! equivalent to SparseMat::value<_Tp>(idx, hashval)
|
||
|
_Tp operator()(const int* idx, size_t* hashval=0) const;
|
||
|
|
||
|
//! returns sparse matrix iterator pointing to the first sparse matrix element
|
||
|
SparseMatIterator_<_Tp> begin();
|
||
|
//! returns read-only sparse matrix iterator pointing to the first sparse matrix element
|
||
|
SparseMatConstIterator_<_Tp> begin() const;
|
||
|
//! returns sparse matrix iterator pointing to the element following the last sparse matrix element
|
||
|
SparseMatIterator_<_Tp> end();
|
||
|
//! returns read-only sparse matrix iterator pointing to the element following the last sparse matrix element
|
||
|
SparseMatConstIterator_<_Tp> end() const;
|
||
|
};
|
||
|
|
||
|
|
||
|
|
||
|
////////////////////////////////// MatConstIterator //////////////////////////////////
|
||
|
|
||
|
class CV_EXPORTS MatConstIterator
|
||
|
{
|
||
|
public:
|
||
|
typedef uchar* value_type;
|
||
|
typedef ptrdiff_t difference_type;
|
||
|
typedef const uchar** pointer;
|
||
|
typedef uchar* reference;
|
||
|
|
||
|
typedef std::random_access_iterator_tag iterator_category;
|
||
|
|
||
|
//! default constructor
|
||
|
MatConstIterator();
|
||
|
//! constructor that sets the iterator to the beginning of the matrix
|
||
|
MatConstIterator(const Mat* _m);
|
||
|
//! constructor that sets the iterator to the specified element of the matrix
|
||
|
MatConstIterator(const Mat* _m, int _row, int _col=0);
|
||
|
//! constructor that sets the iterator to the specified element of the matrix
|
||
|
MatConstIterator(const Mat* _m, Point _pt);
|
||
|
//! constructor that sets the iterator to the specified element of the matrix
|
||
|
MatConstIterator(const Mat* _m, const int* _idx);
|
||
|
//! copy constructor
|
||
|
MatConstIterator(const MatConstIterator& it);
|
||
|
|
||
|
//! copy operator
|
||
|
MatConstIterator& operator = (const MatConstIterator& it);
|
||
|
//! returns the current matrix element
|
||
|
const uchar* operator *() const;
|
||
|
//! returns the i-th matrix element, relative to the current
|
||
|
const uchar* operator [](ptrdiff_t i) const;
|
||
|
|
||
|
//! shifts the iterator forward by the specified number of elements
|
||
|
MatConstIterator& operator += (ptrdiff_t ofs);
|
||
|
//! shifts the iterator backward by the specified number of elements
|
||
|
MatConstIterator& operator -= (ptrdiff_t ofs);
|
||
|
//! decrements the iterator
|
||
|
MatConstIterator& operator --();
|
||
|
//! decrements the iterator
|
||
|
MatConstIterator operator --(int);
|
||
|
//! increments the iterator
|
||
|
MatConstIterator& operator ++();
|
||
|
//! increments the iterator
|
||
|
MatConstIterator operator ++(int);
|
||
|
//! returns the current iterator position
|
||
|
Point pos() const;
|
||
|
//! returns the current iterator position
|
||
|
void pos(int* _idx) const;
|
||
|
|
||
|
ptrdiff_t lpos() const;
|
||
|
void seek(ptrdiff_t ofs, bool relative = false);
|
||
|
void seek(const int* _idx, bool relative = false);
|
||
|
|
||
|
const Mat* m;
|
||
|
size_t elemSize;
|
||
|
const uchar* ptr;
|
||
|
const uchar* sliceStart;
|
||
|
const uchar* sliceEnd;
|
||
|
};
|
||
|
|
||
|
|
||
|
|
||
|
////////////////////////////////// MatConstIterator_ /////////////////////////////////
|
||
|
|
||
|
/** @brief Matrix read-only iterator
|
||
|
*/
|
||
|
template<typename _Tp>
|
||
|
class MatConstIterator_ : public MatConstIterator
|
||
|
{
|
||
|
public:
|
||
|
typedef _Tp value_type;
|
||
|
typedef ptrdiff_t difference_type;
|
||
|
typedef const _Tp* pointer;
|
||
|
typedef const _Tp& reference;
|
||
|
|
||
|
typedef std::random_access_iterator_tag iterator_category;
|
||
|
|
||
|
//! default constructor
|
||
|
MatConstIterator_();
|
||
|
//! constructor that sets the iterator to the beginning of the matrix
|
||
|
MatConstIterator_(const Mat_<_Tp>* _m);
|
||
|
//! constructor that sets the iterator to the specified element of the matrix
|
||
|
MatConstIterator_(const Mat_<_Tp>* _m, int _row, int _col=0);
|
||
|
//! constructor that sets the iterator to the specified element of the matrix
|
||
|
MatConstIterator_(const Mat_<_Tp>* _m, Point _pt);
|
||
|
//! constructor that sets the iterator to the specified element of the matrix
|
||
|
MatConstIterator_(const Mat_<_Tp>* _m, const int* _idx);
|
||
|
//! copy constructor
|
||
|
MatConstIterator_(const MatConstIterator_& it);
|
||
|
|
||
|
//! copy operator
|
||
|
MatConstIterator_& operator = (const MatConstIterator_& it);
|
||
|
//! returns the current matrix element
|
||
|
const _Tp& operator *() const;
|
||
|
//! returns the i-th matrix element, relative to the current
|
||
|
const _Tp& operator [](ptrdiff_t i) const;
|
||
|
|
||
|
//! shifts the iterator forward by the specified number of elements
|
||
|
MatConstIterator_& operator += (ptrdiff_t ofs);
|
||
|
//! shifts the iterator backward by the specified number of elements
|
||
|
MatConstIterator_& operator -= (ptrdiff_t ofs);
|
||
|
//! decrements the iterator
|
||
|
MatConstIterator_& operator --();
|
||
|
//! decrements the iterator
|
||
|
MatConstIterator_ operator --(int);
|
||
|
//! increments the iterator
|
||
|
MatConstIterator_& operator ++();
|
||
|
//! increments the iterator
|
||
|
MatConstIterator_ operator ++(int);
|
||
|
//! returns the current iterator position
|
||
|
Point pos() const;
|
||
|
};
|
||
|
|
||
|
|
||
|
|
||
|
//////////////////////////////////// MatIterator_ ////////////////////////////////////
|
||
|
|
||
|
/** @brief Matrix read-write iterator
|
||
|
*/
|
||
|
template<typename _Tp>
|
||
|
class MatIterator_ : public MatConstIterator_<_Tp>
|
||
|
{
|
||
|
public:
|
||
|
typedef _Tp* pointer;
|
||
|
typedef _Tp& reference;
|
||
|
|
||
|
typedef std::random_access_iterator_tag iterator_category;
|
||
|
|
||
|
//! the default constructor
|
||
|
MatIterator_();
|
||
|
//! constructor that sets the iterator to the beginning of the matrix
|
||
|
MatIterator_(Mat_<_Tp>* _m);
|
||
|
//! constructor that sets the iterator to the specified element of the matrix
|
||
|
MatIterator_(Mat_<_Tp>* _m, int _row, int _col=0);
|
||
|
//! constructor that sets the iterator to the specified element of the matrix
|
||
|
MatIterator_(Mat_<_Tp>* _m, Point _pt);
|
||
|
//! constructor that sets the iterator to the specified element of the matrix
|
||
|
MatIterator_(Mat_<_Tp>* _m, const int* _idx);
|
||
|
//! copy constructor
|
||
|
MatIterator_(const MatIterator_& it);
|
||
|
//! copy operator
|
||
|
MatIterator_& operator = (const MatIterator_<_Tp>& it );
|
||
|
|
||
|
//! returns the current matrix element
|
||
|
_Tp& operator *() const;
|
||
|
//! returns the i-th matrix element, relative to the current
|
||
|
_Tp& operator [](ptrdiff_t i) const;
|
||
|
|
||
|
//! shifts the iterator forward by the specified number of elements
|
||
|
MatIterator_& operator += (ptrdiff_t ofs);
|
||
|
//! shifts the iterator backward by the specified number of elements
|
||
|
MatIterator_& operator -= (ptrdiff_t ofs);
|
||
|
//! decrements the iterator
|
||
|
MatIterator_& operator --();
|
||
|
//! decrements the iterator
|
||
|
MatIterator_ operator --(int);
|
||
|
//! increments the iterator
|
||
|
MatIterator_& operator ++();
|
||
|
//! increments the iterator
|
||
|
MatIterator_ operator ++(int);
|
||
|
};
|
||
|
|
||
|
|
||
|
|
||
|
/////////////////////////////// SparseMatConstIterator ///////////////////////////////
|
||
|
|
||
|
/** @brief Read-Only Sparse Matrix Iterator.
|
||
|
|
||
|
Here is how to use the iterator to compute the sum of floating-point sparse matrix elements:
|
||
|
|
||
|
\code
|
||
|
SparseMatConstIterator it = m.begin(), it_end = m.end();
|
||
|
double s = 0;
|
||
|
CV_Assert( m.type() == CV_32F );
|
||
|
for( ; it != it_end; ++it )
|
||
|
s += it.value<float>();
|
||
|
\endcode
|
||
|
*/
|
||
|
class CV_EXPORTS SparseMatConstIterator
|
||
|
{
|
||
|
public:
|
||
|
//! the default constructor
|
||
|
SparseMatConstIterator();
|
||
|
//! the full constructor setting the iterator to the first sparse matrix element
|
||
|
SparseMatConstIterator(const SparseMat* _m);
|
||
|
//! the copy constructor
|
||
|
SparseMatConstIterator(const SparseMatConstIterator& it);
|
||
|
|
||
|
//! the assignment operator
|
||
|
SparseMatConstIterator& operator = (const SparseMatConstIterator& it);
|
||
|
|
||
|
//! template method returning the current matrix element
|
||
|
template<typename _Tp> const _Tp& value() const;
|
||
|
//! returns the current node of the sparse matrix. it.node->idx is the current element index
|
||
|
const SparseMat::Node* node() const;
|
||
|
|
||
|
//! moves iterator to the previous element
|
||
|
SparseMatConstIterator& operator --();
|
||
|
//! moves iterator to the previous element
|
||
|
SparseMatConstIterator operator --(int);
|
||
|
//! moves iterator to the next element
|
||
|
SparseMatConstIterator& operator ++();
|
||
|
//! moves iterator to the next element
|
||
|
SparseMatConstIterator operator ++(int);
|
||
|
|
||
|
//! moves iterator to the element after the last element
|
||
|
void seekEnd();
|
||
|
|
||
|
const SparseMat* m;
|
||
|
size_t hashidx;
|
||
|
uchar* ptr;
|
||
|
};
|
||
|
|
||
|
|
||
|
|
||
|
////////////////////////////////// SparseMatIterator /////////////////////////////////
|
||
|
|
||
|
/** @brief Read-write Sparse Matrix Iterator
|
||
|
|
||
|
The class is similar to cv::SparseMatConstIterator,
|
||
|
but can be used for in-place modification of the matrix elements.
|
||
|
*/
|
||
|
class CV_EXPORTS SparseMatIterator : public SparseMatConstIterator
|
||
|
{
|
||
|
public:
|
||
|
//! the default constructor
|
||
|
SparseMatIterator();
|
||
|
//! the full constructor setting the iterator to the first sparse matrix element
|
||
|
SparseMatIterator(SparseMat* _m);
|
||
|
//! the full constructor setting the iterator to the specified sparse matrix element
|
||
|
SparseMatIterator(SparseMat* _m, const int* idx);
|
||
|
//! the copy constructor
|
||
|
SparseMatIterator(const SparseMatIterator& it);
|
||
|
|
||
|
//! the assignment operator
|
||
|
SparseMatIterator& operator = (const SparseMatIterator& it);
|
||
|
//! returns read-write reference to the current sparse matrix element
|
||
|
template<typename _Tp> _Tp& value() const;
|
||
|
//! returns pointer to the current sparse matrix node. it.node->idx is the index of the current element (do not modify it!)
|
||
|
SparseMat::Node* node() const;
|
||
|
|
||
|
//! moves iterator to the next element
|
||
|
SparseMatIterator& operator ++();
|
||
|
//! moves iterator to the next element
|
||
|
SparseMatIterator operator ++(int);
|
||
|
};
|
||
|
|
||
|
|
||
|
|
||
|
/////////////////////////////// SparseMatConstIterator_ //////////////////////////////
|
||
|
|
||
|
/** @brief Template Read-Only Sparse Matrix Iterator Class.
|
||
|
|
||
|
This is the derived from SparseMatConstIterator class that
|
||
|
introduces more convenient operator *() for accessing the current element.
|
||
|
*/
|
||
|
template<typename _Tp> class SparseMatConstIterator_ : public SparseMatConstIterator
|
||
|
{
|
||
|
public:
|
||
|
|
||
|
typedef std::forward_iterator_tag iterator_category;
|
||
|
|
||
|
//! the default constructor
|
||
|
SparseMatConstIterator_();
|
||
|
//! the full constructor setting the iterator to the first sparse matrix element
|
||
|
SparseMatConstIterator_(const SparseMat_<_Tp>* _m);
|
||
|
SparseMatConstIterator_(const SparseMat* _m);
|
||
|
//! the copy constructor
|
||
|
SparseMatConstIterator_(const SparseMatConstIterator_& it);
|
||
|
|
||
|
//! the assignment operator
|
||
|
SparseMatConstIterator_& operator = (const SparseMatConstIterator_& it);
|
||
|
//! the element access operator
|
||
|
const _Tp& operator *() const;
|
||
|
|
||
|
//! moves iterator to the next element
|
||
|
SparseMatConstIterator_& operator ++();
|
||
|
//! moves iterator to the next element
|
||
|
SparseMatConstIterator_ operator ++(int);
|
||
|
};
|
||
|
|
||
|
|
||
|
|
||
|
///////////////////////////////// SparseMatIterator_ /////////////////////////////////
|
||
|
|
||
|
/** @brief Template Read-Write Sparse Matrix Iterator Class.
|
||
|
|
||
|
This is the derived from cv::SparseMatConstIterator_ class that
|
||
|
introduces more convenient operator *() for accessing the current element.
|
||
|
*/
|
||
|
template<typename _Tp> class SparseMatIterator_ : public SparseMatConstIterator_<_Tp>
|
||
|
{
|
||
|
public:
|
||
|
|
||
|
typedef std::forward_iterator_tag iterator_category;
|
||
|
|
||
|
//! the default constructor
|
||
|
SparseMatIterator_();
|
||
|
//! the full constructor setting the iterator to the first sparse matrix element
|
||
|
SparseMatIterator_(SparseMat_<_Tp>* _m);
|
||
|
SparseMatIterator_(SparseMat* _m);
|
||
|
//! the copy constructor
|
||
|
SparseMatIterator_(const SparseMatIterator_& it);
|
||
|
|
||
|
//! the assignment operator
|
||
|
SparseMatIterator_& operator = (const SparseMatIterator_& it);
|
||
|
//! returns the reference to the current element
|
||
|
_Tp& operator *() const;
|
||
|
|
||
|
//! moves the iterator to the next element
|
||
|
SparseMatIterator_& operator ++();
|
||
|
//! moves the iterator to the next element
|
||
|
SparseMatIterator_ operator ++(int);
|
||
|
};
|
||
|
|
||
|
|
||
|
|
||
|
/////////////////////////////////// NAryMatIterator //////////////////////////////////
|
||
|
|
||
|
/** @brief n-ary multi-dimensional array iterator.
|
||
|
|
||
|
Use the class to implement unary, binary, and, generally, n-ary element-wise operations on
|
||
|
multi-dimensional arrays. Some of the arguments of an n-ary function may be continuous arrays, some
|
||
|
may be not. It is possible to use conventional MatIterator 's for each array but incrementing all of
|
||
|
the iterators after each small operations may be a big overhead. In this case consider using
|
||
|
NAryMatIterator to iterate through several matrices simultaneously as long as they have the same
|
||
|
geometry (dimensionality and all the dimension sizes are the same). On each iteration `it.planes[0]`,
|
||
|
`it.planes[1]`,... will be the slices of the corresponding matrices.
|
||
|
|
||
|
The example below illustrates how you can compute a normalized and threshold 3D color histogram:
|
||
|
@code
|
||
|
void computeNormalizedColorHist(const Mat& image, Mat& hist, int N, double minProb)
|
||
|
{
|
||
|
const int histSize[] = {N, N, N};
|
||
|
|
||
|
// make sure that the histogram has a proper size and type
|
||
|
hist.create(3, histSize, CV_32F);
|
||
|
|
||
|
// and clear it
|
||
|
hist = Scalar(0);
|
||
|
|
||
|
// the loop below assumes that the image
|
||
|
// is a 8-bit 3-channel. check it.
|
||
|
CV_Assert(image.type() == CV_8UC3);
|
||
|
MatConstIterator_<Vec3b> it = image.begin<Vec3b>(),
|
||
|
it_end = image.end<Vec3b>();
|
||
|
for( ; it != it_end; ++it )
|
||
|
{
|
||
|
const Vec3b& pix = *it;
|
||
|
hist.at<float>(pix[0]*N/256, pix[1]*N/256, pix[2]*N/256) += 1.f;
|
||
|
}
|
||
|
|
||
|
minProb *= image.rows*image.cols;
|
||
|
|
||
|
// initialize iterator (the style is different from STL).
|
||
|
// after initialization the iterator will contain
|
||
|
// the number of slices or planes the iterator will go through.
|
||
|
// it simultaneously increments iterators for several matrices
|
||
|
// supplied as a null terminated list of pointers
|
||
|
const Mat* arrays[] = {&hist, 0};
|
||
|
Mat planes[1];
|
||
|
NAryMatIterator itNAry(arrays, planes, 1);
|
||
|
double s = 0;
|
||
|
// iterate through the matrix. on each iteration
|
||
|
// itNAry.planes[i] (of type Mat) will be set to the current plane
|
||
|
// of the i-th n-dim matrix passed to the iterator constructor.
|
||
|
for(int p = 0; p < itNAry.nplanes; p++, ++itNAry)
|
||
|
{
|
||
|
threshold(itNAry.planes[0], itNAry.planes[0], minProb, 0, THRESH_TOZERO);
|
||
|
s += sum(itNAry.planes[0])[0];
|
||
|
}
|
||
|
|
||
|
s = 1./s;
|
||
|
itNAry = NAryMatIterator(arrays, planes, 1);
|
||
|
for(int p = 0; p < itNAry.nplanes; p++, ++itNAry)
|
||
|
itNAry.planes[0] *= s;
|
||
|
}
|
||
|
@endcode
|
||
|
*/
|
||
|
class CV_EXPORTS NAryMatIterator
|
||
|
{
|
||
|
public:
|
||
|
//! the default constructor
|
||
|
NAryMatIterator();
|
||
|
//! the full constructor taking arbitrary number of n-dim matrices
|
||
|
NAryMatIterator(const Mat** arrays, uchar** ptrs, int narrays=-1);
|
||
|
//! the full constructor taking arbitrary number of n-dim matrices
|
||
|
NAryMatIterator(const Mat** arrays, Mat* planes, int narrays=-1);
|
||
|
//! the separate iterator initialization method
|
||
|
void init(const Mat** arrays, Mat* planes, uchar** ptrs, int narrays=-1);
|
||
|
|
||
|
//! proceeds to the next plane of every iterated matrix
|
||
|
NAryMatIterator& operator ++();
|
||
|
//! proceeds to the next plane of every iterated matrix (postfix increment operator)
|
||
|
NAryMatIterator operator ++(int);
|
||
|
|
||
|
//! the iterated arrays
|
||
|
const Mat** arrays;
|
||
|
//! the current planes
|
||
|
Mat* planes;
|
||
|
//! data pointers
|
||
|
uchar** ptrs;
|
||
|
//! the number of arrays
|
||
|
int narrays;
|
||
|
//! the number of hyper-planes that the iterator steps through
|
||
|
size_t nplanes;
|
||
|
//! the size of each segment (in elements)
|
||
|
size_t size;
|
||
|
protected:
|
||
|
int iterdepth;
|
||
|
size_t idx;
|
||
|
};
|
||
|
|
||
|
|
||
|
|
||
|
///////////////////////////////// Matrix Expressions /////////////////////////////////
|
||
|
|
||
|
class CV_EXPORTS MatOp
|
||
|
{
|
||
|
public:
|
||
|
MatOp();
|
||
|
virtual ~MatOp();
|
||
|
|
||
|
virtual bool elementWise(const MatExpr& expr) const;
|
||
|
virtual void assign(const MatExpr& expr, Mat& m, int type=-1) const = 0;
|
||
|
virtual void roi(const MatExpr& expr, const Range& rowRange,
|
||
|
const Range& colRange, MatExpr& res) const;
|
||
|
virtual void diag(const MatExpr& expr, int d, MatExpr& res) const;
|
||
|
virtual void augAssignAdd(const MatExpr& expr, Mat& m) const;
|
||
|
virtual void augAssignSubtract(const MatExpr& expr, Mat& m) const;
|
||
|
virtual void augAssignMultiply(const MatExpr& expr, Mat& m) const;
|
||
|
virtual void augAssignDivide(const MatExpr& expr, Mat& m) const;
|
||
|
virtual void augAssignAnd(const MatExpr& expr, Mat& m) const;
|
||
|
virtual void augAssignOr(const MatExpr& expr, Mat& m) const;
|
||
|
virtual void augAssignXor(const MatExpr& expr, Mat& m) const;
|
||
|
|
||
|
virtual void add(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res) const;
|
||
|
virtual void add(const MatExpr& expr1, const Scalar& s, MatExpr& res) const;
|
||
|
|
||
|
virtual void subtract(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res) const;
|
||
|
virtual void subtract(const Scalar& s, const MatExpr& expr, MatExpr& res) const;
|
||
|
|
||
|
virtual void multiply(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res, double scale=1) const;
|
||
|
virtual void multiply(const MatExpr& expr1, double s, MatExpr& res) const;
|
||
|
|
||
|
virtual void divide(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res, double scale=1) const;
|
||
|
virtual void divide(double s, const MatExpr& expr, MatExpr& res) const;
|
||
|
|
||
|
virtual void abs(const MatExpr& expr, MatExpr& res) const;
|
||
|
|
||
|
virtual void transpose(const MatExpr& expr, MatExpr& res) const;
|
||
|
virtual void matmul(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res) const;
|
||
|
virtual void invert(const MatExpr& expr, int method, MatExpr& res) const;
|
||
|
|
||
|
virtual Size size(const MatExpr& expr) const;
|
||
|
virtual int type(const MatExpr& expr) const;
|
||
|
};
|
||
|
|
||
|
/** @brief Matrix expression representation
|
||
|
@anchor MatrixExpressions
|
||
|
This is a list of implemented matrix operations that can be combined in arbitrary complex
|
||
|
expressions (here A, B stand for matrices ( Mat ), s for a scalar ( Scalar ), alpha for a
|
||
|
real-valued scalar ( double )):
|
||
|
- Addition, subtraction, negation: `A+B`, `A-B`, `A+s`, `A-s`, `s+A`, `s-A`, `-A`
|
||
|
- Scaling: `A*alpha`
|
||
|
- Per-element multiplication and division: `A.mul(B)`, `A/B`, `alpha/A`
|
||
|
- Matrix multiplication: `A*B`
|
||
|
- Transposition: `A.t()` (means A<sup>T</sup>)
|
||
|
- Matrix inversion and pseudo-inversion, solving linear systems and least-squares problems:
|
||
|
`A.inv([method]) (~ A<sup>-1</sup>)`, `A.inv([method])*B (~ X: AX=B)`
|
||
|
- Comparison: `A cmpop B`, `A cmpop alpha`, `alpha cmpop A`, where *cmpop* is one of
|
||
|
`>`, `>=`, `==`, `!=`, `<=`, `<`. The result of comparison is an 8-bit single channel mask whose
|
||
|
elements are set to 255 (if the particular element or pair of elements satisfy the condition) or
|
||
|
0.
|
||
|
- Bitwise logical operations: `A logicop B`, `A logicop s`, `s logicop A`, `~A`, where *logicop* is one of
|
||
|
`&`, `|`, `^`.
|
||
|
- Element-wise minimum and maximum: `min(A, B)`, `min(A, alpha)`, `max(A, B)`, `max(A, alpha)`
|
||
|
- Element-wise absolute value: `abs(A)`
|
||
|
- Cross-product, dot-product: `A.cross(B)`, `A.dot(B)`
|
||
|
- Any function of matrix or matrices and scalars that returns a matrix or a scalar, such as norm,
|
||
|
mean, sum, countNonZero, trace, determinant, repeat, and others.
|
||
|
- Matrix initializers ( Mat::eye(), Mat::zeros(), Mat::ones() ), matrix comma-separated
|
||
|
initializers, matrix constructors and operators that extract sub-matrices (see Mat description).
|
||
|
- Mat_<destination_type>() constructors to cast the result to the proper type.
|
||
|
@note Comma-separated initializers and probably some other operations may require additional
|
||
|
explicit Mat() or Mat_<T>() constructor calls to resolve a possible ambiguity.
|
||
|
|
||
|
Here are examples of matrix expressions:
|
||
|
@code
|
||
|
// compute pseudo-inverse of A, equivalent to A.inv(DECOMP_SVD)
|
||
|
SVD svd(A);
|
||
|
Mat pinvA = svd.vt.t()*Mat::diag(1./svd.w)*svd.u.t();
|
||
|
|
||
|
// compute the new vector of parameters in the Levenberg-Marquardt algorithm
|
||
|
x -= (A.t()*A + lambda*Mat::eye(A.cols,A.cols,A.type())).inv(DECOMP_CHOLESKY)*(A.t()*err);
|
||
|
|
||
|
// sharpen image using "unsharp mask" algorithm
|
||
|
Mat blurred; double sigma = 1, threshold = 5, amount = 1;
|
||
|
GaussianBlur(img, blurred, Size(), sigma, sigma);
|
||
|
Mat lowContrastMask = abs(img - blurred) < threshold;
|
||
|
Mat sharpened = img*(1+amount) + blurred*(-amount);
|
||
|
img.copyTo(sharpened, lowContrastMask);
|
||
|
@endcode
|
||
|
*/
|
||
|
class CV_EXPORTS MatExpr
|
||
|
{
|
||
|
public:
|
||
|
MatExpr();
|
||
|
explicit MatExpr(const Mat& m);
|
||
|
|
||
|
MatExpr(const MatOp* _op, int _flags, const Mat& _a = Mat(), const Mat& _b = Mat(),
|
||
|
const Mat& _c = Mat(), double _alpha = 1, double _beta = 1, const Scalar& _s = Scalar());
|
||
|
|
||
|
operator Mat() const;
|
||
|
template<typename _Tp> operator Mat_<_Tp>() const;
|
||
|
|
||
|
Size size() const;
|
||
|
int type() const;
|
||
|
|
||
|
MatExpr row(int y) const;
|
||
|
MatExpr col(int x) const;
|
||
|
MatExpr diag(int d = 0) const;
|
||
|
MatExpr operator()( const Range& rowRange, const Range& colRange ) const;
|
||
|
MatExpr operator()( const Rect& roi ) const;
|
||
|
|
||
|
MatExpr t() const;
|
||
|
MatExpr inv(int method = DECOMP_LU) const;
|
||
|
MatExpr mul(const MatExpr& e, double scale=1) const;
|
||
|
MatExpr mul(const Mat& m, double scale=1) const;
|
||
|
|
||
|
Mat cross(const Mat& m) const;
|
||
|
double dot(const Mat& m) const;
|
||
|
|
||
|
void swap(MatExpr& b);
|
||
|
|
||
|
const MatOp* op;
|
||
|
int flags;
|
||
|
|
||
|
Mat a, b, c;
|
||
|
double alpha, beta;
|
||
|
Scalar s;
|
||
|
};
|
||
|
|
||
|
//! @} core_basic
|
||
|
|
||
|
//! @relates cv::MatExpr
|
||
|
//! @{
|
||
|
CV_EXPORTS MatExpr operator + (const Mat& a, const Mat& b);
|
||
|
CV_EXPORTS MatExpr operator + (const Mat& a, const Scalar& s);
|
||
|
CV_EXPORTS MatExpr operator + (const Scalar& s, const Mat& a);
|
||
|
CV_EXPORTS MatExpr operator + (const MatExpr& e, const Mat& m);
|
||
|
CV_EXPORTS MatExpr operator + (const Mat& m, const MatExpr& e);
|
||
|
CV_EXPORTS MatExpr operator + (const MatExpr& e, const Scalar& s);
|
||
|
CV_EXPORTS MatExpr operator + (const Scalar& s, const MatExpr& e);
|
||
|
CV_EXPORTS MatExpr operator + (const MatExpr& e1, const MatExpr& e2);
|
||
|
template<typename _Tp, int m, int n> static inline
|
||
|
MatExpr operator + (const Mat& a, const Matx<_Tp, m, n>& b) { return a + Mat(b); }
|
||
|
template<typename _Tp, int m, int n> static inline
|
||
|
MatExpr operator + (const Matx<_Tp, m, n>& a, const Mat& b) { return Mat(a) + b; }
|
||
|
|
||
|
CV_EXPORTS MatExpr operator - (const Mat& a, const Mat& b);
|
||
|
CV_EXPORTS MatExpr operator - (const Mat& a, const Scalar& s);
|
||
|
CV_EXPORTS MatExpr operator - (const Scalar& s, const Mat& a);
|
||
|
CV_EXPORTS MatExpr operator - (const MatExpr& e, const Mat& m);
|
||
|
CV_EXPORTS MatExpr operator - (const Mat& m, const MatExpr& e);
|
||
|
CV_EXPORTS MatExpr operator - (const MatExpr& e, const Scalar& s);
|
||
|
CV_EXPORTS MatExpr operator - (const Scalar& s, const MatExpr& e);
|
||
|
CV_EXPORTS MatExpr operator - (const MatExpr& e1, const MatExpr& e2);
|
||
|
template<typename _Tp, int m, int n> static inline
|
||
|
MatExpr operator - (const Mat& a, const Matx<_Tp, m, n>& b) { return a - Mat(b); }
|
||
|
template<typename _Tp, int m, int n> static inline
|
||
|
MatExpr operator - (const Matx<_Tp, m, n>& a, const Mat& b) { return Mat(a) - b; }
|
||
|
|
||
|
CV_EXPORTS MatExpr operator - (const Mat& m);
|
||
|
CV_EXPORTS MatExpr operator - (const MatExpr& e);
|
||
|
|
||
|
CV_EXPORTS MatExpr operator * (const Mat& a, const Mat& b);
|
||
|
CV_EXPORTS MatExpr operator * (const Mat& a, double s);
|
||
|
CV_EXPORTS MatExpr operator * (double s, const Mat& a);
|
||
|
CV_EXPORTS MatExpr operator * (const MatExpr& e, const Mat& m);
|
||
|
CV_EXPORTS MatExpr operator * (const Mat& m, const MatExpr& e);
|
||
|
CV_EXPORTS MatExpr operator * (const MatExpr& e, double s);
|
||
|
CV_EXPORTS MatExpr operator * (double s, const MatExpr& e);
|
||
|
CV_EXPORTS MatExpr operator * (const MatExpr& e1, const MatExpr& e2);
|
||
|
template<typename _Tp, int m, int n> static inline
|
||
|
MatExpr operator * (const Mat& a, const Matx<_Tp, m, n>& b) { return a * Mat(b); }
|
||
|
template<typename _Tp, int m, int n> static inline
|
||
|
MatExpr operator * (const Matx<_Tp, m, n>& a, const Mat& b) { return Mat(a) * b; }
|
||
|
|
||
|
CV_EXPORTS MatExpr operator / (const Mat& a, const Mat& b);
|
||
|
CV_EXPORTS MatExpr operator / (const Mat& a, double s);
|
||
|
CV_EXPORTS MatExpr operator / (double s, const Mat& a);
|
||
|
CV_EXPORTS MatExpr operator / (const MatExpr& e, const Mat& m);
|
||
|
CV_EXPORTS MatExpr operator / (const Mat& m, const MatExpr& e);
|
||
|
CV_EXPORTS MatExpr operator / (const MatExpr& e, double s);
|
||
|
CV_EXPORTS MatExpr operator / (double s, const MatExpr& e);
|
||
|
CV_EXPORTS MatExpr operator / (const MatExpr& e1, const MatExpr& e2);
|
||
|
template<typename _Tp, int m, int n> static inline
|
||
|
MatExpr operator / (const Mat& a, const Matx<_Tp, m, n>& b) { return a / Mat(b); }
|
||
|
template<typename _Tp, int m, int n> static inline
|
||
|
MatExpr operator / (const Matx<_Tp, m, n>& a, const Mat& b) { return Mat(a) / b; }
|
||
|
|
||
|
CV_EXPORTS MatExpr operator < (const Mat& a, const Mat& b);
|
||
|
CV_EXPORTS MatExpr operator < (const Mat& a, double s);
|
||
|
CV_EXPORTS MatExpr operator < (double s, const Mat& a);
|
||
|
template<typename _Tp, int m, int n> static inline
|
||
|
MatExpr operator < (const Mat& a, const Matx<_Tp, m, n>& b) { return a < Mat(b); }
|
||
|
template<typename _Tp, int m, int n> static inline
|
||
|
MatExpr operator < (const Matx<_Tp, m, n>& a, const Mat& b) { return Mat(a) < b; }
|
||
|
|
||
|
CV_EXPORTS MatExpr operator <= (const Mat& a, const Mat& b);
|
||
|
CV_EXPORTS MatExpr operator <= (const Mat& a, double s);
|
||
|
CV_EXPORTS MatExpr operator <= (double s, const Mat& a);
|
||
|
template<typename _Tp, int m, int n> static inline
|
||
|
MatExpr operator <= (const Mat& a, const Matx<_Tp, m, n>& b) { return a <= Mat(b); }
|
||
|
template<typename _Tp, int m, int n> static inline
|
||
|
MatExpr operator <= (const Matx<_Tp, m, n>& a, const Mat& b) { return Mat(a) <= b; }
|
||
|
|
||
|
CV_EXPORTS MatExpr operator == (const Mat& a, const Mat& b);
|
||
|
CV_EXPORTS MatExpr operator == (const Mat& a, double s);
|
||
|
CV_EXPORTS MatExpr operator == (double s, const Mat& a);
|
||
|
template<typename _Tp, int m, int n> static inline
|
||
|
MatExpr operator == (const Mat& a, const Matx<_Tp, m, n>& b) { return a == Mat(b); }
|
||
|
template<typename _Tp, int m, int n> static inline
|
||
|
MatExpr operator == (const Matx<_Tp, m, n>& a, const Mat& b) { return Mat(a) == b; }
|
||
|
|
||
|
CV_EXPORTS MatExpr operator != (const Mat& a, const Mat& b);
|
||
|
CV_EXPORTS MatExpr operator != (const Mat& a, double s);
|
||
|
CV_EXPORTS MatExpr operator != (double s, const Mat& a);
|
||
|
template<typename _Tp, int m, int n> static inline
|
||
|
MatExpr operator != (const Mat& a, const Matx<_Tp, m, n>& b) { return a != Mat(b); }
|
||
|
template<typename _Tp, int m, int n> static inline
|
||
|
MatExpr operator != (const Matx<_Tp, m, n>& a, const Mat& b) { return Mat(a) != b; }
|
||
|
|
||
|
CV_EXPORTS MatExpr operator >= (const Mat& a, const Mat& b);
|
||
|
CV_EXPORTS MatExpr operator >= (const Mat& a, double s);
|
||
|
CV_EXPORTS MatExpr operator >= (double s, const Mat& a);
|
||
|
template<typename _Tp, int m, int n> static inline
|
||
|
MatExpr operator >= (const Mat& a, const Matx<_Tp, m, n>& b) { return a >= Mat(b); }
|
||
|
template<typename _Tp, int m, int n> static inline
|
||
|
MatExpr operator >= (const Matx<_Tp, m, n>& a, const Mat& b) { return Mat(a) >= b; }
|
||
|
|
||
|
CV_EXPORTS MatExpr operator > (const Mat& a, const Mat& b);
|
||
|
CV_EXPORTS MatExpr operator > (const Mat& a, double s);
|
||
|
CV_EXPORTS MatExpr operator > (double s, const Mat& a);
|
||
|
template<typename _Tp, int m, int n> static inline
|
||
|
MatExpr operator > (const Mat& a, const Matx<_Tp, m, n>& b) { return a > Mat(b); }
|
||
|
template<typename _Tp, int m, int n> static inline
|
||
|
MatExpr operator > (const Matx<_Tp, m, n>& a, const Mat& b) { return Mat(a) > b; }
|
||
|
|
||
|
CV_EXPORTS MatExpr operator & (const Mat& a, const Mat& b);
|
||
|
CV_EXPORTS MatExpr operator & (const Mat& a, const Scalar& s);
|
||
|
CV_EXPORTS MatExpr operator & (const Scalar& s, const Mat& a);
|
||
|
template<typename _Tp, int m, int n> static inline
|
||
|
MatExpr operator & (const Mat& a, const Matx<_Tp, m, n>& b) { return a & Mat(b); }
|
||
|
template<typename _Tp, int m, int n> static inline
|
||
|
MatExpr operator & (const Matx<_Tp, m, n>& a, const Mat& b) { return Mat(a) & b; }
|
||
|
|
||
|
CV_EXPORTS MatExpr operator | (const Mat& a, const Mat& b);
|
||
|
CV_EXPORTS MatExpr operator | (const Mat& a, const Scalar& s);
|
||
|
CV_EXPORTS MatExpr operator | (const Scalar& s, const Mat& a);
|
||
|
template<typename _Tp, int m, int n> static inline
|
||
|
MatExpr operator | (const Mat& a, const Matx<_Tp, m, n>& b) { return a | Mat(b); }
|
||
|
template<typename _Tp, int m, int n> static inline
|
||
|
MatExpr operator | (const Matx<_Tp, m, n>& a, const Mat& b) { return Mat(a) | b; }
|
||
|
|
||
|
CV_EXPORTS MatExpr operator ^ (const Mat& a, const Mat& b);
|
||
|
CV_EXPORTS MatExpr operator ^ (const Mat& a, const Scalar& s);
|
||
|
CV_EXPORTS MatExpr operator ^ (const Scalar& s, const Mat& a);
|
||
|
template<typename _Tp, int m, int n> static inline
|
||
|
MatExpr operator ^ (const Mat& a, const Matx<_Tp, m, n>& b) { return a ^ Mat(b); }
|
||
|
template<typename _Tp, int m, int n> static inline
|
||
|
MatExpr operator ^ (const Matx<_Tp, m, n>& a, const Mat& b) { return Mat(a) ^ b; }
|
||
|
|
||
|
CV_EXPORTS MatExpr operator ~(const Mat& m);
|
||
|
|
||
|
CV_EXPORTS MatExpr min(const Mat& a, const Mat& b);
|
||
|
CV_EXPORTS MatExpr min(const Mat& a, double s);
|
||
|
CV_EXPORTS MatExpr min(double s, const Mat& a);
|
||
|
template<typename _Tp, int m, int n> static inline
|
||
|
MatExpr min (const Mat& a, const Matx<_Tp, m, n>& b) { return min(a, Mat(b)); }
|
||
|
template<typename _Tp, int m, int n> static inline
|
||
|
MatExpr min (const Matx<_Tp, m, n>& a, const Mat& b) { return min(Mat(a), b); }
|
||
|
|
||
|
CV_EXPORTS MatExpr max(const Mat& a, const Mat& b);
|
||
|
CV_EXPORTS MatExpr max(const Mat& a, double s);
|
||
|
CV_EXPORTS MatExpr max(double s, const Mat& a);
|
||
|
template<typename _Tp, int m, int n> static inline
|
||
|
MatExpr max (const Mat& a, const Matx<_Tp, m, n>& b) { return max(a, Mat(b)); }
|
||
|
template<typename _Tp, int m, int n> static inline
|
||
|
MatExpr max (const Matx<_Tp, m, n>& a, const Mat& b) { return max(Mat(a), b); }
|
||
|
|
||
|
/** @brief Calculates an absolute value of each matrix element.
|
||
|
|
||
|
abs is a meta-function that is expanded to one of absdiff or convertScaleAbs forms:
|
||
|
- C = abs(A-B) is equivalent to `absdiff(A, B, C)`
|
||
|
- C = abs(A) is equivalent to `absdiff(A, Scalar::all(0), C)`
|
||
|
- C = `Mat_<Vec<uchar,n> >(abs(A*alpha + beta))` is equivalent to `convertScaleAbs(A, C, alpha,
|
||
|
beta)`
|
||
|
|
||
|
The output matrix has the same size and the same type as the input one except for the last case,
|
||
|
where C is depth=CV_8U .
|
||
|
@param m matrix.
|
||
|
@sa @ref MatrixExpressions, absdiff, convertScaleAbs
|
||
|
*/
|
||
|
CV_EXPORTS MatExpr abs(const Mat& m);
|
||
|
/** @overload
|
||
|
@param e matrix expression.
|
||
|
*/
|
||
|
CV_EXPORTS MatExpr abs(const MatExpr& e);
|
||
|
//! @} relates cv::MatExpr
|
||
|
|
||
|
} // cv
|
||
|
|
||
|
#include "opencv2/core/mat.inl.hpp"
|
||
|
|
||
|
#endif // OPENCV_CORE_MAT_HPP
|